OpenCV

AND OTHER TOOLS OF THE TRADE

Saumitro Dasgupta

Stanford University / CS231M 2015

Roadmap

- Introduction to OpenCV
+ Matrices in OpenCV
» Common pitfalls

- Best practices

- Live Demo

« Introduction to the Eigen Iibrary

- Optimizing your algorithms using ARM NEON

OpenCV

- An open source BSD licensed computer vision library

. Patent-encumbered code isolated into “non-free” module. (This includes SIFT!)
- Available on all major platforms

- Android, iOS, Linux, Mac OS X, Windows

- Written primarily in C++

- Bindings available for Python, Java, ...

- Well documented at http://docs.opencv.org/

+ Source available at https://github.com/ltseez/opencv

- Caution: Not necessarily the best tool for thejob!

http://docs.opencv.org/
https://github.com/Itseez/opencv

Image Processing

Feature Detection

Object Detection

Machine Learning

Motion Tracking

3D Geometry

What can it do?

Filters, Histograms, Morphology, Color Ops...

Edges, Corners, Lines, Circles, SIFT, SURF, ORB...
Haar, Latent SVM, Template Matching...
SVM, Bayes, Decision Trees, Neural Networks, Clustering, Boosting...

Optical Flow, Kalman Filters, MeanShift...

Camera Calibration, Homography, Fundamental Matrix...

OpenCV for Mobile Platforms

Android

Include the Tegra optimized OpenCV
makeﬁle: OpenCV-[version]-Tegra-sdk/sdk/

native/jni/OpenCV-tegra3.mk toO Android.mk

Tutorials

10S

Include OpenCV.framework
Option 1: Pre-built binaries for 1OS
Option 2: Build from source

Tutorials

http://sourceforge.net/projects/opencvlibrary/files/opencv-ios/
http://docs.opencv.org/doc/tutorials/introduction/ios_install/ios_install.html
http://docs.opencv.org/doc/tutorials/ios/table_of_content_ios/table_of_content_ios.html
https://github.com/Itseez/opencv/tree/master/samples/android

The Mat datatype

// Matrix of doubles (64-bit floats) with 480 rows and 640 columns.
// Single channel (equivalent to CV_64FC1l)
Mat grayscalelmage (480, 640, CV_64F);

// Matrix of 8-bit unsigned integers with 480 rows and 640 columns.
// Three channels.
Mat rgbImage (480, 640, CV_8UC3);

The Mat class represents a fixed type dense n-dimensional array

Used for representing a wide range of things: images, transformations, optical flow maps, trifocal tensor...

A Mat can have multiple channels

Example: A 640x480 RGB image will be a Mat with 480 rows, 640 columns, and 3 channels.

Number of channels is part of the type signature (and not the matrix dimension)

Assignment creates shallow copies.
Be aware of accidental mutation.

/\/\emory allocation is expensive.

Avoid unnecessary deep copies.

Auto—memory management.

|nterna||y reference counted.

Deep / Shallow Copies

// matrix_1 allocates a new block of memory.
Mat matrix_1(1024, 1024, CV_64F);

// matrix_2 and matrix_2 share the same data.
Mat matrix_2 = matrix_1;

// matrix_1 and matrix_2 are both affected.
matrix_2.at< >(5, 7) = 42.0;

// row_10 also shares the same data.
Mat row_10 = matrix_1l.row(10);

// matrix_3 creates a copy of the data.
Mat matrix_3 = matrix_1l.clone();

|mage Data: Endianness

Each pixel can be represented using four 8-bit values (uint8_t).

3 for RGB + 1 for alpha channel (transparency).

Therefore, a single pixel can be packed into a single 32-bit value (uint32_t).

Consider this code snippet, run on a modern x86 processor:

uint32_t pixel = OxFEEDBEEF;

uint8_t*x p = (uint8_t*)&pixel;
printf(, plo0], pl1]l, pl[2], p[3]1);

Output: (ef, be, ed, fe)

Intel x86 processors are little endian: the LSB (least signiﬁcant bit) is stored first.

- OpenCV uses the BGR(A) byte ordering.

Image Data: Layout

Address(M[1,j]) = BaseAddress(M) + 1i-Stride(M) + j-PixelSize(M)

Mat m(480, 640, CV_8UC3);

size_t stride = m.stepl(), pixelSize m.elemSize();

X = 500, y = 200, c = 2;
x(m.data + yxstride + x*pixelSize + c) =

Pixel 1 | Pixel 2 | Pixel 3 | Pixel 4

OpenC\/ matrices are stored in row major order.

Usually stored as a contiguous array (verify using the isContinuous method).

InputArray / OutputArray

// Converts point coordinates from normal pixel coordinates

// to homogeneous coordinates ((x,y)—->(x,y,1))
convertPointsToHomogeneous (InputArray src, OutputArray dst);

- InputArray and OutputArray are proxy classes.
Based on the function, they can be concretely substituted by

cv::Mat and/or std::vector.

- An InputArray is immutable (const-enforced).

Stack-based matrices

Mat allocates memory on the heap.

We want to avoid a||ocating memory on the heap.

Dynamic memory allocation is expensive, can interfere with cache locality.

The Matx type is suitable for small matrices.

Allocated on the stack.

Matx can usually be used wherever you’d use a Mat (a few exceptions exist).

// Use OpenCV's implementation of the Rodrigues transform
// to convert a rotation matrix to the angle-axis form.

Matx33f rotMat = getRotationMatrix();
Matx< , 3, 1> rotVec;
Rodrigues(rotMat, rotVec);

Live Demo

- Let’s build an optical flow tracker.

(We'll have a whole lecture on optical flow later)

. We'll code on Mac OS X, deploy to 1OS.

- The core vision code remains the same across platforms.

+ Trivial to port to Android.

I'he Eigen library

+ Open source header-only C++ linear algebra library.
+ Cross-plattorm, elegant API, well documented.

- Optimized for multiple platforms.
SSE 2/3/4, ARM NEON

+ More flexible than OpenCV’s Mat class.

+Interoperable with OpenCV’s Mat class without copying.

A taste of Eigen

Linear least squares, three different flavors.

// Least squares solution to Axx = b.
MatrixXf A = MatrixXf::Random(3, 2);
VectorXf b = VectorXf::Random(3);
VectorXf x;

// Using SVD:
x = A.jacobiSvd(ComputeThinU | ComputeThinV).solve(b);
cout <X << x <X ;
// Using QR decomposition:

= A.colPivHouseholderQr().solve(b);
cout << << X << ;
// Using the normal equations:

X = (A.transpose()*A).ldlt().solve(A.transpose()*b);

cout <K< << x <K< ;

Elegant APl for matrix

operations.

Includes both fixed and

dynamic matrices.
Static consistency checks

A more complete

reference i1s available.

—igen Quick Reference

// Construction.
MatrixXd T = MatrixXd::Identity();
Matrix3f M;

// Accessing elements.
matrixElem = M(2, 0);

// Reductions.
Vector3f rowSum M.rowwise().sum();
Vector3f colAvg M.colwise().mean();

// Arithmetic.

MatrixXf X = MatrixXf::Random(3, 4);
Matrix< , 3, 4> matrixProduct = MxX;
// Compile-time error:

MatrixXf invalidProduct = matrixProductxM;
// Run-time error:

MatrixXf alsoInvalid = XxM;

http://eigen.tuxfamily.org/dox-devel/group__QuickRefPage.html

A\igned allocations

Structs containing Eigen’s fixed size LB

vectorizable objects need to ensure that

Vector3f position;
Quaternionf orientation;

they’re aligned.

Required for SIMD operations (SSE). /7 Add this macro:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
. Landmark() ;
Not necessary for dynamically allocated ~Landmark() ;
objects.

More details available over here and here.

// Use aligned_allocator for STL containers.
vector<Vector3f,aligned_allocator<Vector3f>> points;

http://eigen.tuxfamily.org/dox-devel/group__TopicFixedSizeVectorizable.html
http://eigen.tuxfamily.org/dox-devel/group__TopicStructHavingEigenMembers.html
http://eigen.tuxfamily.org/dox-devel/group__TopicStlContainers.html

We s

say d

nould forget about small efhiciencies,

bout 97% of the time: premature

optimization is the root of all evil.

Donald Knuth

ACM Computing Surveys, Vol 6, No. 4,December 1974

We s

say d

nould forget about small efhiciencies,

bout 97% of the time: premature

optimization is the root of all evil. Yet we

should not pass up our opportunities in

that critical 3%.

Donald Knuth

ACM Computing Surveys, Vol 6, No. 4,December 1974

Optimizing using ARM NEON

. NEON is ARM’s packed SIMD coprocessor.
+ Designed for vectorized operations (well-suited for image processing tasks).
- Significant speed-ups can be obtained for many common vision algorithms.
+ Many libraries include NEON optimizations (OpenCV, Eigen, Skia...).

- 32 64-bit registers (or 16 128-bit registers).

- Straight-up assembly or C friendly intrinsics (#include <arm_neon.h>).

+ Example: let’s optimize an RGB to grayscale color conversion function.

Baseline color conversion

rgb_to_gray(uint8_t* rgb, uint8_t*x gray, num_pixels)
(1=0; i<num_pixels; ++i, rgh+=3)

v (77*xrgb[0] + 150xrgb[1] + 29*rgb[2]);

v>>8;

gray[i]

Simple luminance-preserving RGB to grayscale conversion, based on weighted sums.
Weights based on human perception of color.

We process one pixel at a time.

Using NEON intrinsics

rgb_to_gray_neon(uint8_t* rgb, uint8_t* gray, num_pixels)

// We'll use 64-bit NEON registers to process 8 pixels 1in parallel.
num_pixels /= 8;
// Duplicate the weight 8 times.
uint8x8_t w_r = vdup_n_u8(77);
uint8x8_t w_g = vdup_n_u8(150);
uint8x8_t w_b = vdup_n_u8(29);
// For intermediate results. 16-bit/pixel to avoid overflow.
uintlex8_t temp;
// For the converted grayscale values.
uint8x8_t result;
(=03 i<num_pixels; ++i, rgh+=8x3, gray+=8)
{
// Load 8 pixels into 3 64-bit registers, split by channel.
uint8x8x3_t src = vld3_u8(rgb);
// Multiply all eight red pixels by the corresponding weights.
temp = vmull_u8(src.val[0], w_r);
// Combined multiply and addition.
temp = vmlal_u8(temp, src.val[l], w_g);
temp = vmlal_u8(temp, src.val[2], w_b);
// Shift right by 8, "narrow" to 8-bits (recall temp is 16-bit).
result = vshrn_n_ul6(temp, 8);
// Store converted pixels in the output grayscale image.
vstl_u8(gray, result);

Based on a version by Nils Pipenbrinck, hilbert-space.de

http://hilbert-space.de

thimization Results

Baseline

NEON

0 500 1000 1500 2000

Number of 1280x960 RGB frames converted to grayscale in a second.

Tested on an iPhone 5S.
Built using clang v6.0 (600.0.57) with -O3.

22

Other Libraries

The Point Cloud Library (PCL)

Framework for working with 3D point clouds.

CCV

Implements many modern vision algorithms (Predator, DPMs,...)

VLFeat
Mature and well-documented vision library, includes MATLAB bindings.

LibCVD

Includes an optimized FAST corner detector implementation.

Sophus
Lie groups library for Eigen. Useful for SLAM / Visual Odometry.

Caffe

Conv nets framework from Berkeley.

DeepBeliefSDK

Conv nets for mobile platforms.

http://pointclouds.org/
http://libccv.org/
http://www.vlfeat.org/
http://www.edwardrosten.com/cvd/
https://github.com/strasdat/Sophus
http://caffe.berkeleyvision.org/
https://github.com/jetpacapp/DeepBeliefSDK

