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Abstract

We propose a technique for fusing a bracketed exposure
sequence into a high quality image, without converting to
HDR �rst. Skipping the physically-based HDR assembly
step simpli�es the acquisition pipeline. This avoids camera
response curve calibration and is computationally ef�cient.
It also allows for including �ash images in the sequence.
Our technique blends multiple exposures, guided by simple
quality measures like saturation and contrast. This is done
in a multiresolution fashion to account for the brightness
variation in the sequence. The resulting image quality is
comparable to existing tone mapping operators.

1. Introduction

Digital cameras have a limited dynamic range, which is
lower than one encounters in the real world. In high dy-
namic range scenes, a picture will often turn out to be under-
or overexposed. A bracketed exposure sequence [5, 17, 26]
allows for acquiring the full dynamic range, and can be
turned into a single high dynamic range image. Upon dis-
play, the intensities need to be remapped to match the typ-
ically low dynamic range of the display device, through a
process called tone mapping [26].

In this paper, we propose to skip the step of computing a
high dynamic range image, and immediatelyfusethe multi-
ple exposures into a high-quality, low dynamic range image,
ready for display (like a tone-mapped picture). We call this
processexposure fusion; see Fig. 1. The idea behind our ap-
proach is that we compute a perceptual quality measure for
each pixel in the multi-exposure sequence, which encodes
desirable qualities, like saturation and contrast. Guidedby
our quality measures, we select the “good” pixels from the
sequence and combine them into the �nal result.

Exposure fusion is similar to other image fusion tech-
niques for depth-of-�eld extension [19] and photomon-
tage [1]. Burt et al. [4] have proposed the idea of fusing a

(a) Exposure bracketed sequence

(b) Fused result

Figure 1. Demonstration of exposure fusion. A
multi-exposure sequence is assembled di-
rectly into a high quality image, without con-
verting to HDR �rst. No camera-speci�c
knowledge, such as the response curve, had
to be accounted for. Total processing time
was only 3.3 seconds (1 megapixel). Image
courtesy of Jacques Joffre.

multi-exposure sequence, but in the context of general im-
age fusion. We introduce a method that can more easily
incorporate desired image qualities, in particular those that
are relevant for combining different exposures.

Exposure fusion has several advantages. First of all,
the acquisition pipeline is simpli�ed, no in-between HDR
image needs to be computed. Since our technique is not



(a) Input images with corresponding weight maps (b) Fused result

Figure 2. Exposure fusion is guided by weight maps for each in put image. A high weight means that
a pixel should appear in the �nal image. These weights re�ect desired image qualities, such as high
contrast and saturation. Image courtesy of Jacques Joffre.

physically-based, we do not need to worry about calibra-
tion of the camera response curve, and keeping track of
each photograph's exposure time. We can even add a �ash
image to the sequence to enrich the result with additional
detail. Our approach merely relies on simple quality mea-
sures, like saturation and contrast, which prove to be very
effective. Also, results can be computed at near-interactive
rates, as our technique mostly relies a pyramidal image de-
composition. On the downside, we cannot extend the dy-
namic range of the original pictures, but instead we directly
produce a well-exposed image for display purposes.

2. Related Work

High dynamic range (HDR) imaging assembles a high
dynamic range image from a set of low dynamic range im-
ages that were acquired with a normal camera [5, 17]. The
camera-speci�c response curve should be recovered in or-
der to linearize the intensities. This calibration step canbe
computed from the input sequence and their exposure set-
tings.

Most display devices have a limited dynamic range and
cannot directly display HDR images. To this end,tone
mappingcompresses the dynamic range to �t the dynamic
range of the display device [26]. Many different tone map-
ping operators have been suggested with different advan-
tages and disadvantages. Global operators apply a spa-
tially uniform remapping of intensity to compress the dy-
namic range [7, 14, 24]. Their main advantage is speed,
but sometimes fail to reproduce a pleasing image. Local
tone mapping operators apply a spatially varying remap-
ping [6, 8, 10, 15, 25, 29], i.e., the mapping changes for dif-
ferent regions in the image. This often yields more pleasing
images, even though the result may look unnatural some-
times. The operators employ very different techniques to

compress the dynamic range: from bilateral �ltering [8],
which decomposes the image into edge-aware low and high
frequency components, to compression in the gradient do-
main [10]. The following two local operators are related
to our method. Reinhard et al. [25] compute a multi-scale
measure that is related to contrast and rescales the HDR
pixel values accordingly. This is in a way similar to our
measures. However, our measures are solely de�ned per
pixel. The method by Li et al. [15] uses a pyramidal im-
age decomposition, and attenuate the coef�cients at each
level to compress the dynamic range. Our method is also
pyramid-based, but it works on the coef�cients of the dif-
ferent exposures instead of those of an in-between HDR
image. Other tone mappers try to mimic the human visual
system, e.g., to simulate temporal adaptation [20]. Instead,
we aim at creating pleasing images and try to reproduce as
much detail and color as possible.

Image fusion techniques have been used for many years.
For example, for depth-of-�eld enhancement [19, 13], mul-
timodal imaging [4], and video enhancement [23]. We
will use image fusion for creating a high quality image
from bracketed exposures. In the early 90's, Burt et al. [4]
have already proposed to use image fusion in this context.
However, our method is more �exible by incorporating ad-
justable image measures, such as contrast and saturation.
Goshtasby [11] also proposed a method to blend multiple
exposures, but it cannot deal well with object boundaries. A
more thorough discussion of these techniques is presented
in Sec. 3.3.

Grundland et al. [12] cross-dissolve between two images
using a pyramid decomposition [3]. We use a similar blend-
ing strategy, but employ different quality measures.

We demonstrate that our technique can be used as a sim-
ple way to fuse �ash/no-�ash images. Previous techniques
for this are much more elaborate [9, 2] and are speci�-



cally designed for this case, whereas our method is �exible
enough to handle that case as well.

3. Exposure Fusion

Exposure fusion computes the desired image by keeping
only the “best” parts in the multi-exposure image sequence.
This process is guided by a set of quality measures, which
we consolidate into a scalar-valued weight map (see Fig. 2).
It is useful to think of the input sequence as a stack of im-
ages. The �nal image is then obtained by collapsing the
stack using weighted blending.

As with previous HDR acquisition approaches [17, 5],
we assume that the images are perfectly aligned, possibly
using a registration algorithm [30].

3.1. Quality Measures

Many images in the stack contain �at, colorless regions
due to under- and overexposure. Such regions should re-
ceive less weight, while interesting areas containing bright
colors and details should be preserved. We will use the fol-
lowing measures to achieve this:

� Contrast: we apply a Laplacian �lter to the grayscale
version of each image, and take the absolute value of
the �lter response [16]. This yields a simple indicator
C for contrast. It tends to assign a high weight to im-
portant elements such as edges and texture. A similar
measure was used for multi-focus fusion for extended
depth-of-�eld [19].

� Saturation: As a photograph undergoes a longer ex-
posure, the resulting colors become desaturated and
eventually clipped. Saturated colors are desirable and
make the image look vivid. We include a saturation
measureS, which is computed as the standard devia-
tion within the R, G and B channel, at each pixel.

� Well-exposedness:Looking at just the raw intensities
within a channel, reveals how well a pixel is exposed.
We want to keep intensities that are not near zero (un-
derexposed) or one (overexposed). We weight each in-
tensityi based on how close it is to0:5 using a Gauss
curve:exp

�
� ( i � 0:5) 2

2� 2

�
, where� equals0:2 in our im-

plementation. To account for multiple color channels,
we apply the Gauss curve to each channel separately,
and multiply the results, yielding the measureE.

For each pixel, we combine the information from the dif-
ferent measures into a scalar weight map using multiplica-
tion. We opted for a product over a linear combination, as
we want to enforce all qualities de�ned by the measures at
once (i.e. like an “AND” selection, as opposed to an “OR”

selection, resp.). Similar to weighted terms of a linear com-
bination, we can control the in�uence of each measure using
a power function:

Wij;k = ( Cij;k )! C � (Sij;k )! S � (E ij;k )! E

with C, S andE, being contrast, saturation, and well-
exposedness, resp., and corresponding “weighting” expo-
nents! C , ! s, and! E . The subscriptij; k refers to pixel
(i; j ) in thek-th image. If an exponent! equals0, the corre-
sponding measure is not taken into account. The �nal pixel
weightWij;k will be used to guide the fusion process, dis-
cussed in the next section. See Fig. 2 for an example of
weight maps.

3.2. Fusion

We will compute a weighted average along each pixel to
fuse theN images, using weights computed from our qual-
ity measures. To obtain a consistent result, we normalize
the values of theN weight maps such that they sum to one
at each pixel(i; j ):

Ŵij;k =
� NX

k 0=1

Wij;k 0

� � 1
Wij;k

The resulting imageR can then be obtained by a
weighted blending of the input images:

Rij =
NX

k=1

Ŵij;k I ij;k (1)

with I k the k-th input image in the sequence. Unfortu-
nately, just applying Eq. 1 produces an unsatisfactory re-
sult. Wherever weights vary quickly, disturbing seams will
appear (Fig. 4b). This happens because the images we are
combining, contain different absolute intensities due to their
different exposure times. We could avoid sharp weight map
transitions by smoothing the weight map with a Gaussian
�lter, but this results in undesirable halos around edges, and
spills information across object boundaries (Fig. 4c). An
edge-aware smoothing operation using the cross-bilateral
�lter seems like a better alternative [22, 9]. However, it is
unclear how to de�ne the control image, which would tell
us where the smoothing should be stopped. Using the orig-
inal grayscale image as control image does not work well,
as demonstrated in Fig. 4d. Also, it is hard to �nd good pa-
rameters for the cross-bilateral �lter (i.e., for controlling the
spatial and intensity in�uence).

To address the seam problem, we use a technique in-
spired by Burt and Adelson [3]. Their original technique
seamlessly blends two images, guided by an alpha mask,
and works at multiple resolutions using a pyramidal image
decomposition. First, the input images are decomposed into
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Figure 3. We fuse differently exposed images using a Laplaci an decomposition of the images and a
Gaussian pyramid of the weight maps, which represent measur es such as contrast and saturation.
Image courtesy of Jacques Joffre.

a Laplacian pyramid, which basically contains band-pass
�ltered versions at different scales [3]. Blending is then car-
ried out for each level separately. We adapt the technique
to our case, where we haveN images andN normalized
weight maps that act as alpha masks. Let thel-th level in a
Laplacian pyramid decomposition of an imageA be de�ned
asL f Agl , andGf B gl for a Gaussian pyramid of imageB .
Then, we blend the coef�cients (pixel intensities in the dif-
ferent pyramid levels) in a similar fashion to Eq. 1:

L f Rgl
ij =

NX

k=1

Gf Ŵ gl
ij;k L f I gl

ij;k

I.e., each levell of the resulting Laplacian pyramid is com-
puted as a weighted average of the original Laplacian de-
compositions for levell , with the l-th level of Gaussian
pyramid of the weight map serving as the weights. Finally,
the pyramidL f Rgl is collapsed to obtainR. An overview
of our technique is given in Figure 3.

Multiresolution blending is quite effective at avoiding
seams (Fig. 4), because it blends image features instead of
intensities. Since the blending equation (1) is computed at
each scale separately, sharp transitions in the weight map
can only affect sharp transitions appear in the original im-
ages (e.g. edges). Conversely, �at regions in the original
images will always have negligible coef�cient magnitude,
and are thus not affected by possibly sharp variations in the
weight function, even though the absolute intensities among
the inputs could be different there.

For dealing with color images, we have found that carry-
ing out the blending each color channel separately produces
good results.

3.3. Discussion

Seamless blending is an often-encountered problem in
image processing and graphics. We use a multiresolution
technique based on image pyramids [3], but other methods

are available as well. In particular, gradient-based blend-
ing [21] has shown to be effective, and it has been applied
to image fusion as well [1, 23]. Gradient methods convert
images to gradient �elds �rst, apply the blending operation,
and reconstruct the �nal image from the resulting gradients.
However, reconstruction requires solving a partial differen-
tial equation, which can be costly for high resolution im-
ages. In addition, gradient-based fusion incurs a scale and
shift ambiguity, and is prone to color shifting [23].

Tone mapping operators may also cause color shifts
like oversaturation [15], and possibly reduce contrast (see
Fig. 7). Our blending is robust against changes in appear-
ance, as it can be seen as a selection process. Even though
we select based on contrast and saturation, we do not di-
rectly change pixels to meet these constraints.

Our work bears similarity to early work on image fusion,
where the Laplacian (or another) pyramid decomposition is
used as well [19, 28, 4]. These methods work directly on
the coef�cients by retaining only those pyramid coef�cient
that are most salient. For instance, the coef�cients with the
largest magnitude are kept [19]:

L f Rgl
ij = argmax

L f I gl
ij;k

jL f I gl
ij;k j

Burt and Kolczynski's exposure fusion technique [4]
is based on the same principle. These approaches com-
pound all details present in the sequence, but they do not
necessarily produce an appealing result; see Fig. 5. In-
stead, we blend the pyramid coef�cients based on a scalar
weight map, but do not directly process individual coef�-
cients at different levels. Measures like saturation and well-
exposedness are hard to evaluate directly from pyramid co-
ef�cients. Our technique basically decouples the weighting
from the actual pyramid contents, which enables us to more
easily de�ne quality measures. In fact, any measure that can
be computed per-pixel, or perhaps in a very small neighbor-
hood, is applicable.

Goshtasby's technique [11] selects the optimal exposure



(a) input sequence

(b) Naive (c) Blurred

(d) Cross-Bilateral (e) Multiresolution

Figure 4. Weighted blending. The input se-
quence is shown in (a). Naive per-pixel
blending (b) yields obvious seams due to
sharp variations in the weight map. Blur-
ring the weight map using a Gaussian kernel
(c) removes the seams, but introduces halos
around edges. Cross-bilateral �ltering (d) is
able to avoid some of the halos, but not all.
Multiresolution blending (e) creates the de-
sired result.

on a per-block basis, and smoothly blends between blocks.
Since blocks may span across different objects, spill infor-
mation across object boundaries, similar to the artifacts re-
lated to Gaussian blurring of the weight map (Fig. 4c).

4. Results

All of our examples were constructed from JPG-encoded
photographs, with unknown gamma correction and camera
response curve. We used equally weighted quality measures
(! C = ! S = ! E = 1) in most examples, except where
mentioned otherwise.

4.1. Quality

Fig. 1 and 2 show a typical bracketed exposure shot:
underexposed, normally exposed and overexposed. Every
exposure contains relevant information that is not present

(a) Input sequence

(b) Ogden et al. [19] (c) Burt et al. [4] (d) Our technique

Figure 5. Comparison with other pyramid-
based fusion techniques [19, 4]. These meth-
ods select the most salient Laplacian pyra-
mid coef�cients in the input sequence (a),
whereas our technique does blending. The
results (b,c) are too dark, and exhibit color
shifts. Our technique (e) produces a more
faithful result compared to the input se-
quence (a). Image courtesy of Jesse Levin-
son.

in the other exposures. Our technique is able to preserve
�nescale details of the buildings, and the warm appearance
of the sky.

In Fig. 7 and 9, we compare our result to tone map-
ping. A rigorous comparison is hard, due to the operators'
implementation-speci�c differences and parameter settings.
We therefore limit ourselves to an informal comparison with
a few popular tone mappers. Compared to Durand et al. [8]
and Reinhard et al. [25], our method offers better contrast.
Li et al.'s approach [15] produces quite similar results to
ours in terms of contrast, but it also exhibits slight oversat-
uration. We had to tweak the saturation parameter in their
implementation to correct the colors.

The multiresolution blending technique discussed in
Sec. 3.2 is not without its problems. In Fig. 6, our result
contains a spurious low frequency brightness change, which
is not present in the original image set. It is caused by a
highly varying change in brightness among the different ex-
posures. Intuitively speaking, this artifact can be considered
as a very blurred version of the seam problem, illustrated
in Fig. 4b. Constructing a higher Laplacian pyramid par-
tially solves this problem. However, the pyramid height is
also limited by the size of the downsampling/upsampling
�lter [3].



w � h � N init. (s) update (s) total (s)
864� 576� 3 .75 .82 1.6
1227� 818� 3 1.5 1.6 3.2
1728� 1152� 3 3.0 3.2 6.2
864� 576� 7 1.5 1.5 3.0
1227� 818� 7 3.0 3.1 6.1
1728� 1152� 7 6.0 6.0 12.0

Table 1. Computation times for our tech-
nique. We computed results for 1

2 , 1 and 2
megapixel images. N is the number of im-
ages in the stack. The initialization builds
the Laplacian pyramids for each input image.
The update step computes the weight maps,
the corresponding Gaussian pyramids, and
the blending. For small image sizes (half to
one megapixel), the user gets interactive in-
teractive feedback (about one second).

4.2. Performance

Our unoptimized software implementation performs ex-
posure fusion in a matter of seconds; see table 1. After
building the Laplacian pyramids, our technique can provide
near-interactive feedback (see timings of update step). This
enables a user gain more control over the fusion process,
as he or she can adjust the weighting of quality measures.
Additional controls on the input images, such as linear
and non-linear intensity remappings are also possible (like
brightness adjustment or gamma curves). This can be used
to give certain exposures more in�uence. Motivated by the
work of Strengert et al. [27], we expect that our algorithm
could eventually run in real-time on graphics hardware.

4.3. Including FlashExposures

A �ash exposure can �ll in a lot of detail, but tends to
produce unappealing images, and it may include spurious
highlights and re�ections. Recent work on �ash photogra-
phy has introduced techniques for combining �ash/no-�ash
image pairs [9, 22, 2]. Our technique can be used here as
well, as our quality measures are also relevant in this case.
Fig. 8 shows how our technique has successfully removed a
highlight and �lled in details, similar to Agrawal et al. [2].
However, it cannot remove �ash shadows [9] or unwanted
re�ections [2].

4.4. Comparison of Quality Measures

Fig. 10 shows a comparison of our quality measures.
Exposure fusion is performed with either contrast, satura-
tion or well-exposedness. The desk scene in the �rst row

(a) Fused (b) Single exposure

Figure 6. A spurious low-frequency change
in brightness might occur due to the differ-
ence in exposure among the input images.
The result (a) appears too bright toward the
bottom, which seems unnatural compared to
the input images. One of the input images is
shown in (b) for reference.

comes out better with saturation turned on. Contrast makes
the background a bit dark, and well-exposedness darkens
the center of the monitor, making the result look unnatural.
For the house scene on the next row, saturation and well-
exposedness produce vivid colors, which is less so for con-
trast. Finally, the last row shows how contrast retains de-
tails, which are not present in the saturation image (e.g. in
the water, and the buildings' windows). Well-exposedness
yields an interesting image, but it looks less natural than the
other two.

In general, we found that well-exposedness by itself pro-
duces fairly good images. However, in some cases it tends
to create an unnatural appearance, because it always favors
intensities around0:5. Saturation and contrast does not have
this problem. But then again, the results from those mea-
sures are not always as interesting as those produced by
well-exposedness.

5. Conclusion

We proposed a technique for fusing a bracketed exposure
sequence into a high quality image, without converting to
HDR �rst. Skipping the physically-based HDR assembly
step simpli�es the acquisition pipeline. It avoids camera
response curve calibration, it is computationally ef�cient,
and allows for including �ash images in the sequence.



(a) Durand et al. [8] (b) Reinhard et al. [25]

(c) Li et al. [15] (d) Our technique

Figure 7. Comparison with several popular tone mapping tech niques. Our algorithm yields image
quality that is competitive with the other results. See Fig. 9 for a more detailed inspection.

Our technique blends images in a multi-exposure se-
quence, guided by simple quality measures like saturation
and contrast. This is done in a multiresolution fashion to
account for the brightness variation in the sequence. Qual-
ity is comparable to existing tone mapping operators. Our
approach is controlled by only a few intuitive parameters,
which can be updated at near-interactive rates in our unop-
timized implementation.

We would like to investigate different pyramidal image
decompositions, such as wavelets and steerable pyramids.
Also, we would like to include more measures, in particu-
lar one that would detect camera noise. An optimized GPU
implementation would enable the user to interactively con-
trol the fusion process, but could also be used to display a
multi-exposure video stream [18] in real-time. Finally, we
would like to look into the applicability of our technique
to other image fusion tasks, such as depth-of-�eld exten-

sion [19] and multimodal imaging [4].
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