Face augmentation using Facebook Graph Data
Vaibhav Aggarwal (vaibhavg@stanford.edu)

Abstract

In this project | experimented with different techniques to identify people in a camera frame. |
tried feature matching and image embedding techniques. | found that image embedding based
on Siamese network had the highest accuracy and was most mobile friendly. The technique
yielded in 82% face identification accuracy. It took less than 5 millisecond to identify a person
from a database of 1 million images.

Introduction

The objective of this project is to propose a computer vision technique which can be used to
identify faces from a database of faces. This is usually known as face identification or face
verification problem. This problem is different from face detection problem which intends to just
find all human faces in a given image (which is already a largely solved problem with most
commercial cameras being able to do it with reasonable accuracy). This problem takes the
detected faces and classifies them as one of the human face. In a way this is an N-Way
classification problem where N is the number of people in the database. The goal of this project
is to also go one step further and optimize the solution for a mobile platform which is more
restricted in cpu, memory and network bandwidth availability.

This algorithm can be used to implement an Android application which will augment the faces of
people in an image with their names in real time. A user would be able to use this application to
augment the incoming camera frame with facebook user info in real time. This application is
also useful to augment the memory of people with not just their visual appearance but with other
information like names, relationship etc. Figure 1 illustrates an example of what is possible with
such an application.

mailto:vaibhavg@stanford.edu

Alaukik Aggarwal
(Brother)

Likes Linkin Park
and Coldplay.

Priya Garg
(Alaukik's Friend)

Figure 1

Previous Work

The idea of face identification is very popular and there are a number of researches which are
focus on solving this problem. The traditional techniques involve using SIFT [12] and other
feature extraction techniques to match similar objects. One shortcoming of these approaches is
that they are sensitive to lighting conditions, geometric transformations of the input images
(shift, scaling, rotation) and to other variabilities (changes in facial expression, glasses, and
obscuring scarves). More recent techniques attempt to use neural networks for classification. A
very popular paper by Facebook on Deep Face [3] explores using deep networks to learn
representation directly from the pixels of the face. The features do not come from prior
knowledge about the task but they are learned from data. When used with a convolutional
network as the mapping function, the proposed method can learn a wide range of invariances
present in the data. The problem with such a network is that it requires myriad of data to train
and avoid overfitting small data sets. Our approach is somewhat similar to that of [1] which uses
a siamese architecture for signature verification. The difference is that the network is simpler

and easier to train. A paper by Google on FaceNet [2] extends this technique to generate N-Dim
neural networks which are again very deep in nature. They also use a large dataset of labelled
for training.

Technical Details

Summary
The main focus of this project is to implement techniques to accurately predict the person in
picture. | have outlined the following initial algorithm:

Offline Process:
1. Retrieve the database of images.
2. Compute SIFT/ORB features from the profile pictures.
3. Create a database of features mapped to profile information.
a. Explore algorithms to build a single unique feature for a person combining
features from multiple images.
4. Explore indexing schemes for fast searching this database based on feature similarity.

Online Process:
1. Use Android API to detect faces in current camera frame.
2. Send the image across to search server.
3. Compute features from the faces.
4. Apply feature matching or image embedding to compute the most likely classification for
the image.

DataSet

There are a number of different datasets available for face data. But there are some particular
properties that were required for this problem. We focus on similarity between profile pictures
which tend to be closeup view of a person with clearly visible facial features.

The following parameters were looked at before choosing a dataset:
1. The dataset should be fairly recent to match the quality of pictures found on facebook.
2. The data should have thousands of images if not hundreds of thousands in order to
support training deep neural network.
3. The data set should have multiple different images of same person in order to allow
training and evaluating face similarity of a person.

| researched a number of different datasets Yale [10], CMU [11], FaceScrub [9] etc. | used
FaceScrub because it had a large collection of good quality images (approx. 100,000 images)
and they were very close to what a profile picture would look like.

Feature Similarity
The first approach | tried was to use feature similarity. | followed the following Algorithm:

Extract SIFT/ORB features from training images.

Use k nearest neighbor matcher to get feature matches for query image.
Discard the features with do not pass the ratio test with threshold of 0.8.
Compute homography using RANSAC from those features.

Compute the number of inliers from the matching featured.

Use that as the score to rank image matches.

ok whN =

Image Embedding using Siamese Network

The second approach | using Siamese network for training and classification of images. Its
called a zero one classification where zero means the two images match and one means they
do not match. The idea is so take a pair of image like X1 and X2 and feed them to two separate
convolutional towers. The two towers actually share the same set of weights and these
convolutional towers are used to learn features from two images. Then these extracted features
are passed to a fully connected layer and eventually to a loss function. The most important part
here is the loss function. We used contrastive loss function which maximizes the distance
between dissimilar images and minimizes the distance between similar images. This technique
produces an n dimensional vector representation of an image in Euclidean space. Hence it is
quite easy to simply use L2_NORM to compare distance between 2 images. The following table
explains the neural network used for training.

Table 1
Layer Output Kernel Size Stride Bias Type Pool Type
Img 1 Data
Img 1 Convolution 1 20 5 1 Constant
Img 1 Pool 1 2 2 Max
Img 1 Convolution 2 50 5 1 Constant
Img 1 Pool 2 2 2 Max

Img 1 Fully Connected 500

Img 1 ReLU

Img 1 Fully Connected 10

Img 1 Fully Connected 2

Img 2 Convolution 1 20 5 1 Constant

Img 2 Pool 1 2 2 Max

Img 2 Convolution 2 50 5 1 Constant

Img 2 Pool 2 2 2 Max
Img 2 Fully Connected 500

Img 2 RelLU

Img 2 Fully Connected 10

Img 2 Fully Connected 2

Contrastive Loss

Experiments

Feature Matching

| tested feature matching based approach using ORB and SIFT. Even though this technique
works well for a lot of computer vision tasks, it is not very well suited for face identification. Two
main problems with this approach are:
1. The input images have very similar local features like the corner around the eye, lips
and hairs etc.
2. If you take the similar features and do the geometric verification they turn out to me
geometrically coherent because most people have a very similarly placed local features
like eyes ears lips etc .

Figure 2 illustrates an example of a bad match. You will notice that eyes, hair and nose feature
got matched with the person on the right. It yielded a very high inlier count even though the two
people are different.

| also tried two different approaches, the first one was to use the full image for feature matching
and the second was to identify faces in the image and use the cropped image. In all cases
cropped face image yielded better results.

Figure 2

| used two different metrics to measure quality:

Classification Accuracy

This was measured by classifying test images against a database of images. For identification
the matching image with highest inlier score (or least distance for later techniques) was used.
Please note that we typically have more than one image of a person in the database. This is
essentially measuring N-way classification accuracy where N is the number of distinct people in
database.

Pair Wise Matching Accuracy
This was measured by computing 2-way classification accuracy (of image pairs) as same or not.

SIFT had 33% classification accuracy and 76% pair-wise accuracy. ORB had 40% classification
accuracy and 60% pair-wise accuracy. For this project classification accuracy is more important
than pair-wise accuracy. The details are described in figure 5 and 6.

Image Embedding using Siamese Network

The network was trained on 10,000 image pairs and tested on 1,000 image pairs. This yielded
much better classification accuracy of 82% and pair-wise accuracy of 77%. Some of the results
are shown in figure 3. You can notice that the same person in very different situations is also
classified correctly.

Good match even with pictures taken in different setting at different age.

Figure 3

Bad Match

Figure 4

The following chart illustrates classification accuracy comparison.

Classification Accuracy

100 B Accuracy

75
]
3 50
8
<
25
0
ORB SIFT Slamese Netword
Methodology
Figure 5

The following chart illustrates pair-wise matching comparison.

Pairwise Image Matching Accuracy

85 B Accuracy
(%)

75
£
o

65
§
g
<

55 I

- 1R

ORB - Full ORB - SIFT - Full SIFT - Siamese
Image Face Image Face Met
Methodology

Figure 6

Usage Statistics
| also collected a number of usage statistics to make sure that the techniques are viable for
mobile platform.

Database Creation Latency

The database creation latency which is a one time process is reasonably low for all techniques.
Siamese network, once trained, does particularly well on this. Furthermore it can be parallelized
to multiple servers.

Technique Num Database Images Time to process (sec)
ORB 10000 800
SIFT 10000 800
Siamese Net Inference CPU 10000 332
Siamese Net Inference GPU 10000 291

Inference Latency
The inference latency is reasonably low for all techniques. It is particularly low of Siamese
network.

Technique Num Images Latency per Query (msec)
ORB 1 8
SIFT 1 8.5

Siamese Net 1 0.005

Database query latency and Memory Usage

The database query latency is very high for ORB and SIFT (order of minutes) even for 10K
images. Hence it did not make sense to test them on larger dataset. It makes them unsuitable
for database query in real-time (unless a vocabulary tree is used). The inference latency of
database query built using image embedding is order of 3-9 millisecond. The memory usage us
also reasonably low.

Num Database Images Latency (msec) Memory Usage (MB)
100K 3.438 19.2
1™ 4.381 93.19

10M 9.678 806.02

Conclusions

In this project | presented 2 different techniques of face verification namely feature matching
and image embedding using Siamese Network. Out of these two approaches Siamese network
definitely seems to be better suited for face verification. First of all it proved to be quite accurate
(with scope of further improvement using deeper networks and triplets described in FaceNet
paper [2]). We were able to get 82% classification accuracy with our model. Also it can be used
to embed images in euclidean space which makes it very efficient to query for similar images.
Hence it is well suited for mobile applications. The one advantage traditional feature matching
based approach still has is that it requires lot less data to train. Overall | showed that it is
possible to do face verification on a mobile platform.

References

1.

10.

11.

12.

Learning a Similarity Metric Discriminatively, with Application to Face Verification
http://yann.lecun.com/exdb/publis/pdf/chopra-05.pdf

FaceNet: A Unified Embedding for Face Recognition and Clustering
http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/1A_089 ext.pdf
DeepFace: Closing the Gap to Human-Level Performance in Face Verification
http://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf

Training Siamese network with Caffe
http://caffe.berkeleyvision.org/gathered/examples/siamese.html

Hierarchical classification of images by sparse approximation
http://cvgl.stanford.edu/papers/imavis13_sparse.pdf

CNN and Random Forest
http://web.stanford.edu/class/cs231m/lectures/lecture-8-machine-learning.pdf
Opencv face recognition.
http://docs.opencv.org/modules/contrib/doc/facerec/facerec_tutorial.html
Android face recognition
http://developer.android.com/reference/android/media/FaceDetector.Face.html
FaceScrub dataset

http://vintage.winklerbros.net/facescrub.html

Yale dataset

http://vision.ucsd.edu/~iskwak/ExtYaleDatabase/download.html

CMU dataset.

http://vasc.ri.cmu.edu/idb/html/face/frontal_images/

Distinctive Image Features from Scale-Invariant Keypoints
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

http://yann.lecun.com/exdb/publis/pdf/chopra-05.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/1A_089_ext.pdf
http://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf
http://caffe.berkeleyvision.org/gathered/examples/siamese.html
http://cvgl.stanford.edu/papers/imavis13_sparse.pdf
http://web.stanford.edu/class/cs231m/lectures/lecture-8-machine-learning.pdf
http://docs.opencv.org/modules/contrib/doc/facerec/facerec_tutorial.html
http://developer.android.com/reference/android/media/FaceDetector.Face.html
http://vintage.winklerbros.net/facescrub.html
http://vision.ucsd.edu/~iskwak/ExtYaleDatabase/download.html
http://vasc.ri.cmu.edu/idb/html/face/frontal_images/
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

