Augmented Reality on Multi-Devices

Jiyue Wang, Shaohan Xu, Wei Xia
Stanford University
450 Serra Mall, Stanford, CA 94305

{jiyue, shao2, wei4d}@stanford.edu

Abstract

In this project, we built a multi-device marker-based
augmented reality system on i0OS. As most of the existing
AR apps in App store support only one device, it will be
more fun if nearby users can share a view and interact with
each other. We implemented a demo version of the system
in which users can touch at the screen and change the color
of the rendering object and the scene will be synced with
connected users.

1. Introduction

We have explored many AR apps in App store and most
of them use a printed marker to help register the virtual ob-
ject on the real world image. This marker-based technique
is described in [3]]. The idea is to analyze the distortion of
the rectangular marker and use this information to overlay
virtual object on the captured image. Using different mark-
ers, we can identify a huge number of objects. One benefit
of using marker is that it doesn’t need a 3D sensor to mea-
sure the position or orientation of the device. However, it
is not always convenient for users to print a marker. On the
other hand, non-marker based technique, without extra sen-
sors, may suffer from inaccurate register and high compu-
tational power. [2] gives a feasible solution to this problem.
In our project, we built a multi-device marker-based AR app
on 10S. As far as we know, most current marker-based AR
apps only allow one device and it will be more fun if another
device can join in.

2. Background and Outline
2.1. Review of previous work

Augmented reality is very popular especially in game de-
veloping. With the help of AR technology the surround-
ing real world of the user becomes interactive and digitally
manipulable, which is really cool. Games with augmented
reality have been available in App store for a long time.
“ARBasketball” established marker based AR system and

allows user to play basketball shooting games as long as
they have a marker with them. “Toyota 86 AR” is to make
users feel and exprience the real car by practicing driving
a virtual car around a virtual course. They both obtained
really good marker tracking performance. Inspired by this,
we decided to add a multi-device mode.

2.2. Contributions

We built a marker-based AR app that allows users to
share the same view and interact with each other. This may
serve as a demo as well as an inspiration for later game
development. Several examples are chess, Tic-tac-toe and
card games, etc.

3. Technical Details
3.1. Marker Detection and Tracking

The system first captures the camera view and then sends
it to the detection and tracking pipeline. The marker detec-
tion is developed based on open source libary “ocv_ar”[1]].
We will first discuss this library and then we will talk about
things to be improved. Our first try is the bitonal marker as
they are cheap to detect and identify. It takes 15ms on av-
erage to proecess one frame, which makes it real-time and
thus the detection is performed per frame. The marker de-
tection pipeline can be decomposed as following:

Figure 1. Tracking pipeline

The preprocessing includes converting camera frame to
grayscale image and computing the gaussian pyramid. The
gaussian pyramid is used in the second stage where the
system converts the grayscale image to binary image. In-
stead of using a global threhold to get the binary image, we
used an adaptive threholding method to make the system



robust to high dynamic of global luminance change. Adap-
tive threshold gets threshold values based on pixel values
of each block size. The next step in the pipeline is to do
marker identification. First of the all, the marker we use is
of size 7x7 pixels:

Figure 2. marker(id=111)

With all black on the boundary, markers can be eas-
ily identified. The centering 5x5 pixel block is for encod-
ing.For each row of the 5x5 pixel block, it is encoded using
2 bits. All the possible code are 00—10000, 01—10111,
10—01001, 11—01110. Because of the characteristic of
the marker, it is attempted to use shape analysis to sepa-
rate the marker from other objects. OpenCV inbuilt func-
tion “approxPolyDP” is helpful at this step to analyze each
contour shape and select only convex quadrilateral as can-
didates for marker.

For each candidates, the system first computes perspec-
tive transform and warp the marker candidate to the refer-
ence marker image. To filter out the wrong candidates, the
system first tests whether the boundary pixel is all black and
whether each row has a valid encoding.

e

Figure 3. Result of each block

After the marker is identified, we need to estiamte
the marker’s position. OpenCV has built-in functions
“solvepnp” to get the rotation and translation matrix nicely
based on the following function:

fx cx| [r11 r12 r13 ¢l
fy cy| [r21 r22 r23 2
1 r3l r32 r33 t3

[
e
Il

X
Y
A
1

Above all this library handles well for the marker de-
tection. However the overall detection time is about 25ms.
Also, it does not works well when the iphone is in great mo-
tion. We identified that the pre-processing time and adaptive
threshold are the main cause for the time consumption. We
overcome this by directly scale the input image to smaller
resolution instead of using gaussian pyramids. Because in
our case, the most coarse pyramid is what we want to use.
As to the second factor when the iphone is in motion, the de-
tection is poor. The reason for this is that when the iphone
moves, the marker is not as standard as it should be, which
cause the shape detection fails. Our improvement for this
one is that after we get the binary image, we will scale it
down. The rule of scale is that for every 2x2 pixel block,
the scaled down pixel will be white as long as there are
more than 1 white pixel in the 2x2 block. This operation
is similar to “dilate” operation. In this way, we can connect
the dotting line and the detection is more stable with respect
to motion.

3.2. Virtual Object Rendering

After the marker is detected, we can build a coordinate
system attached to the marker. The next step is to add 3D
objects to the scene.

We used the OpenGL ES to display objects on the scene.
With Blender as our modeling tool, we can easily build our
own model as well as access the rich online resources. We
first tried on some simple geometry like cube and sphere.
The obj file of the cube is exported from blender, and then
converted to a cpp file that can be directly imported into our
code. We also tried some more complicated models down-
loaded from Internet. So far we successfully displayed the
monochromatic geometry of the model on the scene. How-
ever when it comes to texture mapping, things are not going
on so well. As none of us has experience with OpenGL
before, we decided to leave this problem for the future de-
velopment.

Figure 4. Object rendering

To respond to the user tapping on the screen and find out
which object the user tapped on, we have to convert the 2D
coordinate on the screen to the 3D coordinate in OpenGL.
There are three ways to do that: color coding, selection



mode, and ray picking. Color coding, which we choose, as-
signs each object with a different color. When the user taps,
render the objects on the back buffer, then read back the
tapped pixel from the back buffer and check its color. The
other two methods have their drawbacks. Selection mode
in OpenGL is unfortunately not supported in OpenGL ES.
Ray tracing is independent of OpenGL and requires differ-
ent ray-object interaction algorithms for different geome-
tries. There are still some error in OpenGL regarding this
part. We have included the buggy code for reference.

Figure 5. Color coding

3.3. Multi-Device Registration

In this App, users can choose single or multi-player
mode to play with nearby users. We choose Multipeer
Connectivity framework to communicate with nearby iOS
devices through Wi-Fi networks, peer-to-peer Wi-Fi, and
Bluetooth personal area networks. Due to band-width lim-
its, we have to determine what kind of data should be synced
through the network. Considering that we are using a binary
mask, which makes it easy to detect, and we only need to
send some state data in the game, it is more reasonable to
detect the marker and compute different perspective tran-
form individually. When user interacts with the device, it
then sends necessary data to peers for syncing the view.

In our implementation, a touch listener starts to work ss
soon as the user starts the game. It captures the position of
tapping on the screen and sends a random color information
to the peers if necessary. If some device sends the color
data, all the device will render the object in the new color at
the next frame, making it look like viewing the same object
from different devices.

As there is no host in the current system, there might be
concurrency issue; however, it is rare in our scenario.

4. Experiments

We tested the system on varies devices including iPhone
5 and iPhone 6 with iOS 8.3 as deployment target. The
system performs real time with about 15ms to process one
frame. Here is a link to the demo: https://youtu.be/
r4dsoggOfwzA

5. Conclusion

None of us have experience in iOS (or Android), thus we
spent a lot time on debugging iOS and building the system
view. OpenGL framework in iOS is more complicated than
we thought and its hard to debug. We successfully imported
different geometry to the system, but there is still problem
with texture mapping.

Currently, our mark-based tracking system is not very
stable. Even occluding a small part of the maker can make
the tracker lose target, as the square boarder is no longer
complete. Moreover, when camera shakes, the blurred im-
ages may fail the edge detection. We can use a marker board
to deal with the occlusion problem and alleviate the blurring
issue.

We didn’t use an image-based marker as we thought a
binary marker should give faster and accurate result. How-
ever, as the binary marker worked worse than we expected
due to the blurring issue, we decided to try optical flow
tracking from project 2. Optical flow does not detect the
marker each frame but tracks the existing marker, thus help-
ing to deal with the occlusion problem. Although tracking
fails when the marker is far away, it won’t often be the case
considering cell phone is a small device. This part is almost
finished, but unfortunately we do not have enough time to
finish it.

Although marker-based augmented reality may be easier
to implement, computationally cheaper, and yields better re-
sult, the inconvenience it brings still make us think about a
way to get rid of it. There has been previous works about
non-marker based AR, we are looking forward to learn from
them.

References

[1] ocvar, https://github.com/htw—inka/ocv_ar.

[2] G. Klein and D. Murray. Parallel tracking and mapping on a
camera phone. In Proc. Eigth IEEE and ACM International
Symposium on Mixed and Augmented Reality (ISMAR’09),
Orlando, October 2009.

[3] J. Rekimoto. Matrix: A realtime object identification and reg-
istration method for augmented reality. In Computer Human
Interaction, 1998. Proceedings. 3rd Asia Pacific, pages 63—-68.
IEEE, 1998.


https://youtu.be/r4sogq0fwzA
https://youtu.be/r4sogq0fwzA
https://github.com/htw-inka/ocv_ar

