Sign Language Translation Using Kinect And

Dynamic Time Warping
Author: Jinhua Xu

Abstract

This project explores the capability of a simple gesture recognition pipeline on a mobile device
using Microsoft Kinect. The results show that given a limited number of gestures (sign
language vocabulary of size 5) and a few algorithmic optimizations (dynamic time warping
with locality constraint, Sakoe-Chiba band), a real-time continuous gesture recognition system
can be implemented on a mobile device with reasonable accuracy.

1 Introduction

Sign language translation is an important area of research that could help bridge the
communication gap between audio speakers and hearing impaired people. It is the most
natural and fluent way to communicate compared to writing or typing, which can hinder
conversation. A sign language translator must be able to recognize continuous sign gestures
in real-time, and this is made much more accessible if the procedure can be carried out on a
mobile device. There has been little work done in supporting gesture recognition on a mobile
platform.

This project approached the problem using a Microsoft Kinect to capture object depth data,
and from that calculate the skeleton joint data. Next, the Dynamic Time Warping algorithm is
used to calculate the optimal matching gesture from a database of gesture sequences. The
dataset used consists of five gestures in the American Sign Language vocabulary, namely “I”,
‘you”, “love”, “no”, and “please”.

2.1 Previous Work

In the area of gesture recognition, the most widely used algorithm studied is Dynamic Time
Warping [1, 2], first used by the speech recognition community. This will be the primary
approach of this project. Other methods include Hidden Markov Models [3], as well as Neural
Networks [4]. Comparatively, DTW performs more accurately on a small vocabulary of
gesture sequences, however it is limited by its computational demands as a larger vocabulary
is used. Meanwhile, HMM and NN models require a more involved training phase, but the
recognition pipeline has lighter computational demands.

2.2 Key Contributions

The key contribution of this project is to apply previous gesture recognition techniques and
make it feasible under the resource constraints of a mobile device. The author recognizes that

a Microsoft Kinect needs to be plugged into a power outlet and is rather clumsy to mobilize,
but the focus of this paper is on the implementation and feasibility of the underlying
computation, regardless of the sensor. Furthermore, this technology can be replaced by
something inherently mobile, such as the Structure sensor [5].

3.1 Summary of the Technical Solution

The project uses an Android implementation of libfreenect and OpenNI for the depth sensor
input processing and skeleton joint computation [6], and uses OpenCYV for feature extraction
and implementation of a locality-constrained version of Dynamic Time Warping. Recognition
is done using a fixed-size sliding window of the last N features. The following block diagram
summarizes our approach.

Input Kinect depth
frame

l

Preprocess depth
data

Clear sliding
window

User
tracked?

Compute skeleton
joints

l

Extract features

Update sliding
window

l

no

Return not found

yes

DTW sequence
recognition

3.2 Preprocessing Depth Sensor Data

The OpenNl library provides skeleton joint tracking utility, similar in function to the official
Microsoft Kinect API. It achieves this by first obtaining the depth data from the Kinect sensor,
then map the depth data to the corresponding skeleton joints via a randomized decision forest
trained from over a million training samples [7]. The returned skeleton joints include the
centroid locations of the head, neck, shoulders, elbows, hands, torso, hips, knees, and feet in
3D world coordinates. For compatibility on the mobile device, this project used an Android
implementation of the OpenNI library. The resulting mobile skeleton joint tracking performs at
30 fps for a 640x480 image.

3.3 Feature Extraction

After skeleton joint coordinates are computed, they are extracted into a feature vector p.
Since sign language usually only involves upper body movements, only the head, neck,
shoulders, elbows, and hands coordinates are retained, and all other joint data are discarded.
Formally, the considered set of coordinates is S € % where |S| = 8.Then, a centroid 3D

coordinate, C = M‘?”LW’, is computed and all remaining coordinates are normalized by
subtracting the centroid: Vv € S, v = v — C, §'= {v'} . This allows the gesture recognition to
be translation-invariant. Then, the distance Dbetween the shoulders are calculated, and all
cogrdinate§ are further Dormalized by dividing by the shoulder distance:

Vv E S, v =2, §={v"}. This further makes the algorithm scale-invariant. The final feature

vector pconsists of concatenating the elements of S”into a 24-dimensional vector.

3.4 Feature Sequence Recognition Using Dynamic Time Warping

To compare the similarity between two feature sequences, one should account for differences
in the sequences that might vary in time or speed. The Dynamic Time Warping algorithm
addresses these problems by computing an optimal match between two sequences with
certain restrictions.

Formally, let the two sequences be 0 = {0Q,, 0,, ... 0,,} and C = {C,, C,, ... C,,} where each
sequence is composed of features extracted from consecutive frames in time. Let the
distance between features Q,;and C;be the Euclidian distance denoted by dist(i, j). The DTW

algorithm aims to compute an optimal match cost matrix 7 of size m x nwhere the element
T(i,j) denotes the optimal cost between the two sequences compared up to elements Q,and
C, respectively. This is given by the recurrence:

T(i,)) = dist(i,j) + min[T(5,j = 1), TG = 1), T — 1, — 1)]

Intuitively explained, if 7'(i,j — 1) happens to be the minimum argument, then sequence Q is
in a compressed subsequence, and if 7(i—1,j) is the minimum, then sequence Q is in an
elongated subsequence. Only when T'(i — 1,/ —1)is chosen do both sequences realign. After
the entire matrix is computed, we can obtain the optimal match cost between the two entire
sequences by querying T'(m,n) .

The original DTW algorithm in O(mn) . We can optimize this by applying the Sakoe-Chiba
band [1], essentially pruning the search space by skipping any cell that lies outside a band
width R from the diagonal, formally V T'(i,j) s.t. |i—j| > R. This reduces the search runtime to

O(mR).

The DTW approach is summarized by the following figure. The green lines represent the
Sakoe-Chiba band, while the red highlighted path represents the optimal path that minimizes
the pointwise Euclidean distance between the two sequences. For the mobile environment,
we used m = n = 60 which corresponds to two second sequences, and a band width R =10.

Similar, but out of phase peaks ... \/\-A
VA C

Q'\l #,-FC

- produce a large Euclidean distance.

However this can be corrected by DTWs
nonlinear alignment.

——'r

Finally, to be able to recognize gestures in a continuous fashion, we implement a sliding
window that contains the last » features from the latest frames. When the window is full, the
earliest feature is popped from the front and the new feature is pushed in the back. This is
implemented using a std: : deque data structure in C++. The sliding window is then taken as
a feature sequence and compared against all sequences in the database, and the lowest cost
optimal matched database sequence is taken as the winner -- as long as it is above a certain
threshold. This is illustrated below:

Gesture parameter |

Gesture parameter 2

Gesture parameter 3

>

Sliding Window
Hop Size

Since the recognition pipeline must compare the current window against all gesture
sequences in the database, the running time increases linearly with the number of gestures in
the database. This could be mitigated by adding a hop size parameter #, limiting the
invocation of DTW to once every 4 frames. In practice, because our data set is small enough,
this was not necessary.

4 Experiments

Five different ASL gestures were tested: “I”, “you”, “love”, “no”, “please”. Using a sliding
window width of 60 frames, a Sakoe-Chiba band of 10 frames, we were able to achieve 30 fps
for 640x480 frames. Below are some captured images of the recognition pipeline correctly
labeling the gesture in real-time.

To test the accuracy of the recognizer, each gesture was performed at two separate speed
(slow and fast), and three different locations (left, middle, and right), and at two separate
depths (near and far), resulting in 12 samples for each. A gesture is defined to be successfully
recognized if the pipeline outputs the correct label for 90% of the duration of the gesture. Here
are the results for each gesture:

Near left | Near Near Far left Far Far right | Total
middle right middle
I 2 2 2 2 1 2 91.67%
You 2 2 2 2 2 1 91.67%
Love 2 2 2 2 2 2 100%
No 2 1 2 1 1 1 66.67%
Please 2 2 2 2 2 2 100%

Most of the distinct gestures are correctly recognized accurately. The few problems arise
when two gestures are very similar to each other position-wise, such as “I” and “no”. Because
the current pipeline does not take into account hand contour or posture, and instead rely on
3D position coordinates, it is expected to get similar gestures wrong.

Performance wise, the pipeline spends around 20-25 ms per frame, which translates to a
framerate of 30 fps. Because our sequences were limited in both window size and quantity to
compare, memory footprint was not a concern. However, this could become a limiting factor if
we were required to handle thousands of gestures.

5 Conclusion

In this project we explored the capability of a simple gesture recognition pipeline on a mobile
device. We were able to show that given a limited number of gestures (sign language
vocabulary of size 5) and a few algorithmic optimizations (dynamic time warping with locality
constraint, Sakoe-Chiba band), we can achieve a real-time continuous gesture recognition
system on a mobile device. However, we realize the limitations of the system -- the
computational demand increases linearly with the number of gestures to compare against in
the database, so that a complete sign language translator that can translate thousands of
distinct ASL vocabulary words is infeasible with the current approach. To satisfy such
demands, a system implemented using Hidden Markov Model or Deep Neural Networks
would be more appropriate.

6 References

[1] Sakoe, H. & chiba, S. (1978). Dynamic programming algorithm optimization for spoken
word recognition. IEEE Trans. Acoustics, Speech, and Signal Proc., Vol. ASSP-26. pp. 43-49.
[2] A. Corradini, “Dynamic time warping for off-line recognition of a small gesture vocabulary,”
in RATFG-RTS '01: Proceedings of the IEEE ICCV Workshop on Recognition, Analysis, and

Tracking of Faces and Gestures in Real-Time Systems (RATFG-RTS’01). Washington, DC,
USA: IEEE Computer Society, 2001.

[3] H. Lee and J. Kim, “An HMM-Based Threshold Model Approach for Gesture Recognition,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 21, No. 10, pp.
961-973, 1999

[4] S. Fels and G. Hinton, “Glove-talk: A neural network interface between a dataglove and a
speech synthesizer,” Neural Networks, IEEE Transactions on, vol. 4, no. 1, pp. 2-8, 1993.
[5] Structure Sensor. (2015, June 7). Retrieved from http://www.structure.io/

[6] Niisato, Hirotaka. (2014, April 17). “openFrameworks 8.1 and OpenNI 2.2 on Android
tutorial”. Retrieved from
http://www.hirotakaster.com/weblog/openframeworks-8-1-and-openni-2-2-on-android-tutorial/
[7] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A.
Blake. 2011. Real-time human pose recognition in parts from single depth images. In
Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR '"11). IEEE Computer Society, Washington, DC, USA, 1297-1304.
DOI=10.1109/CVPR.2011.5995316 http://dx.doi.org/10.1109/CVPR.2011.5995316

http://www.structure.io/
http://www.hirotakaster.com/weblog/openframeworks-8-1-and-openni-2-2-on-android-tutorial/

