
SlideSearch: Slide-to-Lecture-Video Search System on ClassX Database

Mengyuan Yan
School of Engineering, Stanford University

Stanford, CA, 94305
mengyuan@stanford.edu

Abstract

A slide-to-lecture-video search system is implemented on
Android tablet. The search system gets video clips from
the SCPD database. Previous research on Fisher Vector
and Residual Enhanced Visual Vector are combined to gen-
erate compact index for each database image. An aug-
mented database of clean slide images is used to exploit
the temporal redundancy of videos. Original database of
video keyframes and augmented database of slides are com-
pared and experiments show using augmented database
can achieve significant memory reduction and precision
increase.

1. Introduction
As the usage of computers and the internet penetrates

deeper into peoples’ lives, universities are following the
trend offering their courses online. Platforms like Cours-
era and Udacity are offering large amounts of courses from
universities as well as great tech companies. Stanford Uni-
versity also has its own online lecture video database called
ClassX. It is developed by Stanford Center for Professional
Development and it achieves lecture videos from classes in
the school of engineering. The problem in these databases
is that it is hard to search for the time when professor was
talking about a particular concept, equation, etc. This forces
people to scan through the entire video to find information
they need, and makes online learning less efficient. To solve
this problem, I developed a way to search for video chunks
by taking a photo of a slide using mobile devices. Given
photo of a slide, whether printed or displayed on a screen,
the application leads user to the webpage which contains
the matching video and informs user the time stamp to start
watching.

The mobile slide-to-lecture-video search system adds to
the mobile augmented reality family. Applications like
google goggles have been able to recognize landmarks,
paintings, common products, barcodes, etc. They are help-
ing people with entertainment, e-commerse and other areas

in their daily lives. The slide-to-lecture-video search sys-
tem can help in the field of education. As a matter of fact,
many students in universities are still using printed slides.
Therefore, taking a picture of a slide is a convenient way
to search for related information. Even if slides are viewed
on computer, it is still more convenient to take a picture of
the screen than using screen shot and copy it to a web-based
application.

2. Related Works
The image-to-video search problem has been addressed

by Sivic and Zisserman [7] a decade ago. A video is rep-
resented by a sequence of keyframes at specific frame rate.
Therefore, image-to-video search is built on content based
image retrieval. Bag-of-Words model [6] and Vocabulary
Tree [4] are widely used for this task today. For large-scale
image retrieval, it is important to build compact index for
database images and reduce memory usage. It is desir-
able to fit the database indices in the RAM of a mobile
device, so that users can process queries on their own device
instead of sending their query to the server. This low-
ers the requirement for a strong server, reduces latency
due to network data transmission, and protects user pri-
vacy. Recent progress in this direction includes the Vec-
tor of Locally Aggregated Descriptors (VLAD) [3], the
Compressed Fisher Vector (CFV) [5], and the Residual
Enhanced Visual Vector (REVV) [2]. In this project, I com-
bined the thoughts in CFV and REVV to build compact
indices for database images. Both work are based on the
notion of visual words. Different from the Bag-of-Words
and Vocabulary Tree which use 10k to 1M visual words,
CFV and REVV schemes only use a few hundred to a few
thousand visual words. Instead of building a histogram of
words, the vector residual between local descriptors and
visual words are aggregated to form compact signature for
images. The CFV applied Fisher Kernel to image retrieval
problem, and model local descriptors as i.i.d. random vec-
tors generated from a Gaussian Mixture Model. The REVV
uses mean aggregation for vector residuals, and exploit
dimension reduction techniques like Linear Discriminate

1

Figure 1: figure 1. Pipeline for generating a compact index
for query image and compare it against database indices.

Analysis. Both CFV and REVV use binarization to achieve
compact visual vectors to enable large-scale mobile visual
search.

An important feature for videos is their temporal redun-
dancy. Much progress is made in the direction to exploit
the temporal redundancy of videos to aggregate local fea-
tures and compress database files [1]. In the case of lecture
videos, an easy way to exploit the temporal redundancy is
to introduce an augmented database consisting of clean lec-
ture slide images converted from pdf or powerpoint files.
With the help of augmented database, the slide-to-lecture-
video search becomes a two-step process: match the photo
of a slide against the augmented database images, and link
the database image to its corresponding video and time
stamp with a preprocessed annotation file. This method
reduces the memory requirement by a significant amount,
and boosts retrieval precision.

3. Design of compact index for database image
Figure 1 shows the pipeline for generating a compact

index for query image and comparing it against database
indices. I will explain each block in detail in the following
subsections.

3.1. Dimension Reduction

During codebook training, covariance matrix is calcu-
lated from all SIFT descriptors extracted from training
images. Each descriptor is then reduced to a 32 dimension
vector using Principle Component Analysis. When building
database image indices and query image index, the same
dimension reduction is applied to every descriptor. This
dimension reduction would speed up the training process,
and would help reduce the size of database image indices.

3.2. Word Residual Aggregation

Let us denote the set of descriptors extracted from a
image as X = {xt, t = 1...T}. T is the number of
descriptors, with a typical value of a few hundreds or thou-
sands. We assume that the xt’s are i.i.d random vectors
generated from distribution p. The Fisher Kernel frame-
work assumes that p is a Gaussian mixture model (GMM):
p(x) =

∑N
i=1 wipi(x). Each Gaussian pi can be viewed

as a visual word and N is the vocabulary size. wi is the
mixture weight which reflects the percentage of descriptors
that are quantized to this visual word. µi is the mean vector
of the Gaussian pi, which can be viewed as the word cen-
troid. Σi is the covariance matrix of the Gaussian pi. It is
assumed that the covariance matrices are diagonal and we
denote by σ2

i the variance vector. The GMM p is trained
on a large number of images using Maximum Likelihood
Estimation (MLE).

After the GMM is obtained from training, we want to
build indices for database images. Each descriptor xt is first
soft assigned to visual words. γt(i) is the probability that xt
belongs to Gaussian pi.

γt(i) =
wipi(xt)∑N

j=1 wjpj(xt)
(1)

Word residuals xt−µi for one visual word pi are aggre-
gated in the following manner:

FX
i =

1
√
wi

T∑
t=1

γt(i)
xt − µi

σi
(2)

Here the vector division (xt − µi)/σi is calculated ele-
mentwise. The aggregated vector for each visual word is
then concatenated and L2 normalized to form the index
for image. This aggregation discounts the contribution of
descriptors which are close to word centroids (with respect
to its variance) thus have small (xt − µi)/σi, or are soft
assigned with high probability to a visual word with large
weight wi. Both above cases indicate that the descriptor
is frequent in training dataset, therefore its contribution to
discriminating between images is small. This weighting is
similar to the tf-idf weighting in text retrieval, where fre-
quent words have small contributions towards representing
the document.

3.3. Power law

In order to reduce the influence of large values in the vec-
tor before L2 normalization, power law should be applied
elementwise to suppress large values. Power value α = 0.5
is used from heuristics.

3.4. Binarization

The index for image constructed so far is high-
dimensional and dense. It would consume much memory,
and computing L2 distance between indices would be slow.
Therefore, it is helpful to binarize the index elementwise to
1 or -1 according to their sign. As the Fisher Vector for each
visual word is 32 dimensional, it can be packed to a 32-bit
unsigned integer.

2

3.5. Calculate Weighted Correlation

To calculate the similarity between a pair of indices, we
calculate the correlation:

1

NqNd

∑
i⊂Iq

⋂
Id

C(Sq,i, Sd,i) (3)

Here Sq,i and Sd,i are the binarized Fisher Vector at the
i th visual word for query image and database image,
respectively. C(Sq,i, Sd,i) = dPCA − 2H(Sq,i, Sd,i) and
H is the Hamming distance which can be quickly com-
puted with bitwise XOR and POPCNT. Iq and Id are the
sets of visual words that query image and database image
has visited, respectively. Nq =

√
dPCA|Iq|, Nd =√

dPCA|Id| are normalization factors. To make the cor-
relation more discriminatory between matching and non-
matching image pairs, We apply a weight to the correla-
tion for each visual word. The weight would highlight
large correlation, because larger correlation indicates higher
possibility of a match. We define the weight w(C) =
P (match|C), which can be calculated by training with
annotated matching and non-matching image pairs. The
similarity score changes to

1

NqNd

∑
i⊂Iq

⋂
Id

w(C(Sq,i, Sd,i))C(Sq,i, Sd,i) (4)

4. Mobile search system implementation

Figure 2 shows the pipeline for the practical mobile
slide-to-lecture-video search system. The codebook train-
ing and database index generation are done on the server.
The matches from clean slides to video information (url
and time stamp) are manually annotated for 233 slides for
demonstration. It could also be obtained by pairwise match-
ing clean slides and video keyframes on the server given
enough preprocessing time. The trained codebook, database
index file, annotation file and all database image feature
files are downloaded to the tablet. The query is processed
on tablet, and the application would open a browser to show
the returned matching video.

4.1. Training

The training dataset consists of 7304 images. Some sam-
ple images from the training dataset is shown in figure 3.
They are natural images of buildings, people, natural view,
etc. 11642 matching pairs are annotated as well as 11642
non-matching pairs. The most stable 300 SIFT features are
extracted from each image to ensure that codebook train-
ing is not degraded by noisy features. 512 visual words are
trained on this dataset. The trained codebook data is 330KB
in size.

Figure 2: Pipeline for the mobile slide-to-lecture-video
search system

Figure 3: Sample images from the training set.

4.2. Database

The augmented database consists of 955 slide images
that are from CS155 class in spring quarter 2013-14. The
images are directly converted from pdf files. Some sam-
ple images are shown in figure 4. Aside from text contents,
the slides also contain figures, flowcharts and images. The
index file for 955 images is 2.4MB in size.

4.3. On Device Processing

An Android application is developed and tested on
NVIDIA SHIELD tablet. Upon starting the application,
codebook data and database index file are loaded into mem-
ory. The openCV cameraview handler would manage and
render preview frames from the device’s camera. The user
could then move the tablet and fill the cameraview with a
slide that he would like to search. When the user touches the

3

Figure 4: Sample images from the database.

screen, openCV cameraview handler would pass the pre-
view frame from Java coded front-end to C++ coded native
functions.

Because the NVIDIA version of opencv2.4.8 do not
have impleamentation for SIFT/SURF, source code from
local version of opencv2.4.9 is included to extract SIFT
features from the input image. After that, index for the
query image is generated and compared to database indices
to return a ranked list of candidate matches. Top ten
matching database images are then compared to the query
image using RANSAC. L1 norm is used instead of L2
norm to match SIFT features in order to speed up computa-
tion. Related functions are from NVIDIA tegra-optimized
opencv2.4.8 library. Finally, the database image with
the highest number of inliers is regarded as the correct
match, and its corresponding video URL and time stamp
is retrieved from the annotation file. These information are
returned back to the Java front-end. Since I haven’t figure
out a way to control video player embedded in the webpage,
I choose to show the video time stamp in a dialog popped
from the application, and then open the web browser to
show the matching video clip. The user can move the time
bar to the time indicated by previous dialog.

Several improvement could be done to optimize the per-
formance on mobile device in terms of speed. First, GPU-
computed SURF or ORB feature could be used to speed up
local feature extraction. However, bacause text patches are
extremely repetitive compared to natural images, test should
be done to show that these features could be used to dis-
criminate text images. Due to time constraint of the project
I didn’t explore along this path. Second, FLANN-based fea-
ture matching can be used to speed up the geometric verifi-
cation step. However, FLANN-based feature matching does
not have built-in support for cross-check which excludes
many-to-one matches. Cross-check is proven to be crucial
for reliable geometric verification for text images from pre-
vious experiments. Geometric verification failed to find the
matching slide from other candidates when only ratio test
is used but cross-check is unabled. Therefore, FLANN-

based feature matching is not adopted in the mobile appli-
cation. Third, short list returned for geometric verification
can be shorter to save time on geometric verification. This
is at the cost of losing retrieval precision. Considering the
speed-precision trade-off, a short list of 10 image is cho-
sen. This leads to 95% precision with geometric verification
time 4.4s.

5. Experimental Results
5.1. The Mobile Slide-to-Lecture-Video Search

Interface

Screen shots of the mobile application interface is shown
in figure 5. On starting the application, camera preview
frames are shown on the screen. The user can focus the
camera on the slide he would like to search and tap on the
screen. The application then takes the preview frame and
search against the database. When result is returned, a dia-
log is popped up to show the time stamp of the matching
video chunk. When the user clicks on ”Got it” botton, the
application would start a web browser to open the ClassX
webpage containing the matching video. Stanford network
login might be required to access ClassX videos.

The mobile application takes on average 8.3 seconds to
perform a query. Among the 8 seconds, 0.24 second is spent
on loading the codebook and database indices. 2.42 sec-
onds are spent on extracting SIFT features from the input
frame. The input frame is resized to have a width of 1000
pixel in order to limit the time of feature extraction. 1.32
second is spent on generating index for the input frame
and comparing it to database indices. Finally, 4.4 seconds
are used to perform geometric verification on 10 candidate
database images. The codebook data used is 330KB and
the database index file is 2.4MB. 880MB feature files for
database images are stored on the sdcard, and about 1MB
would be loaded for each database image involved in geo-
metric verification. Using adb tools, the PSS total memory
consumption is 26.75MB.

The accuracy of this searching application is very high.
However, the system would fail if auto-focusing failed to
capture a well-focused frame, or if the input frame has a lot
of background clutter.

5.2. Effectiveness of Augmented Database

The following sections measure retrieval precision under
various conditions using a Linux server instead of a mobile
device in order to have repeatable systematic experiments.
In this section, we compare the retrieval performance of
searching a photo of a slide against the original database
consisting of video keyframes, versus searching against the
augmented database consisting of clean slide images. The
query set is made up of 98 photos of slides, half of them
are taken for printed slides and the other half are taken for

4

Figure 5: Screen shots of mobile slide-to-lecture-video
search application.

slides shown on computer screen. Some photos have rota-
tion and perspective changes, but they don’t contain back-
ground clutter. A codebook of 512 visual words is used for
both experiments. In the first experiment, database images
are video keyframes extracted at 1 frame per second. The
database has a total of 88720 images. After comparing
query index with database indices, the top 300 keyframes
are passed to RANSAC, and reranked by the number of
inliers. The retrieval is successful if the top keyframe is
within the correct video clip. Precision at one in this case
is only 18%. In the second experiment, database images
are 955 clean slide images. After comparing query index
with database indices, the top 4 slide images are passed
to RANSAC, and reranked by the number of inliers. The
retrieval is successful if the top slide is the one shown in the
photo. We chose short list size 4 in order to have similar

Figure 6: Precision at one for varying number of visual
words and varying short list size.

ratio between short list size and database size. The preci-
sion at one is boosted to 90%. In addition, database index
file is only 2.4MB compared to the 227MB index file for
original database. It is a 100X memory saving.

5.3. Varying size of codebook

In this section, we compare the retrieval performance
with different sizes of codebooks. The query set is made
up of 98 photos of slides as mentioned in the previous sec-
tion. Codebook with 128,256,512, and 1024 visual words
are experimented. The augmented database of slide images
is used and precision at one is calculated for each case with
varying short list size. The result is shown in figure 6. From
this figure, it is obvious that as the short list size increase,
precision would increase. This is not surprising since we are
using geometric verification to rerank candidate matches.
Because geometric verification would almost certainly find
the true match if it is within the short list, the possibil-
ity of finding the true match would increase with growing
short list. Comparing the retrieval performance for differ-
ent number of visual words, a larger vocabulary would lead
to higher precision, especially when the short list size is
small. However the performance tend to saturate when the
number of visual words increases from 512 to 1024. This
could be because the database is rather small. Considering
the fact that database index file size and search time would
grow linearly with the number of visual words, there is a
speed/time-precision trade off in choosing a proper code-
book size. Since our database is small, memory and speed
are not important problems for our mobile application, we
choose to use 512 visual words in our mobile search system.

5.4. Robustness under Background Clutter

I created another query set which has 30 images of slides
with various background clutter. Types of clutter include
other slides, other non-slide text, and non-text objects. Sam-
ples of query images can be found on the left side of figure

5

Figure 7: Precision at one for test images with background
clutter.

8. The system is tested on this dataset in the same way as
described in the previous section. Precision at one is cal-
culated for various vocabulary size and short list size. The
result is shown in figure 7.

Comparing figure 7 with figure 6, the precision has
dropped significantly. For short list smaller than 5 images,
the precision has dropped to below 30%. Analyzing the
result for different types of clutter, the syetem is more
robust to non-text clutter than text clutter, and there is no
obvious difference between slide text clutter and non-slide
text clutter. A possible reason for the precision decrease
is that descriptors extracted from clutter text get mixed up
with descriptors from our region of interest during residual
aggregation, and makes the index less like the index of orig-
inal slide. descriptors from non text clutter are less likely to
be assigned to the same visual word as descriptors from text
patches, thus would have less influence on the index. Some
trial into solving this problem of background clutter is dis-
cussed in section 5.

6. Discussion and Future Work

As mentioned in the previous section, the mobile slide-
to-lecture-video search system is not very robust for back-
ground clutter, especially text clutter. Investigation into this
direction is limited by the time of this project. As a first
step, I am able to segment the printed paper or the com-
puter screen from other non-text background by detecting
white pixels in the input photo. The algorithm first converts
color image into grayscale image by taking the minimum
of three color channel values. Taking the minimum puts
penalty on object that are bright but have hue. Then the
grayscale image is sent to detect MSER or to binarization
using threshold. Some results using threshold binarization
are shown in figure 8.

More processing is needed to segment the slide region
we want out of other texts. This can be done by first finding

:

:

:

Figure 8: Segmentation of paper or computer screen from
input photos.

the direction of text lines by Hough transform and rectifying
the image, and then projecting the binary image to horizon-
tal and vertical direction to find blank margins around the
slide. Due to limitation of time this is not implemented well
to achieve satisfying results.

Test is also done in taking photos of only part of a slide.
Preliminary results show that the system could retrieve the
right video when non-trivial amount of slide is shown (more
than two lines of text). Systematic test can be done to inves-
tigate the robustness and limitation in matching parts of a
slide to lecture videos.

7. Conclusion

In this project, I have combined the previous research on
Fisher Vectors and Residual Enhanced Visual Vector to gen-
erate compact indices for database images to achieve effi-
cient slide-to-lecture-video search. In order to exploit the
temporal redundancy of videos, an augmented database of
clean slide images is used instead of the database of video
keyframes. Using augmented database has led to 100X
memory reduction and has boosted the retrieval precision
from 18% to 90%. An Android Application is implemented
and tested on NVIDIA SHIELD tablet.

6

8. Acknowledgement
Special thanks to Andre Araujo for helpful discussions

during this project and for sharing part of the code to build
compact index for images. In addition, thanks should be
given to Huizhong Chen for helpful suggestions on seg-
menting slides and analyzing layouts.

References
[1] A. Araujo, M. Makar, V. Chandrasekhar, D. Chen, S. Tsai,

H. Chen, R. Angst, and B. Girod. Efficient video search using
image queries. In Proc. ICIP, 2014.

[2] D. Chen, S. Tsai, V. Chandrasekhar, G. Takacs, R. Vedantham,
R. Grzeszczuk, and B. Girod. Residual enhanced visual vector
as a compact signature for mobile visual search. Signal Pro-
cessing, 93(8):2316 – 2327, 2013. Indexing of Large-Scale
Multimedia Signals.

[3] H. Jegou, M. Douze, C. Schmid, and P. Perez. Aggregat-
ing local descriptors into a compact image representation.
In Computer Vision and Pattern Recognition (CVPR), 2010
IEEE Conference on, pages 3304–3311, June 2010.

[4] D. Nister and H. Stewenius. Scalable recognition with a
vocabulary tree. In Computer Vision and Pattern Recogni-
tion, 2006 IEEE Computer Society Conference on, volume 2,
pages 2161–2168, 2006.

[5] F. Perronnin, Y. Liu, J. Sanchez, and H. Poirier. Large-scale
image retrieval with compressed fisher vectors. In Computer
Vision and Pattern Recognition (CVPR), 2010 IEEE Confer-
ence on, pages 3384–3391, June 2010.

[6] J. Sivic and A. Zisserman. Video google: a text retrieval
approach to object matching in videos. In Computer Vision,
2003. Proceedings. Ninth IEEE International Conference on,
pages 1470–1477 vol.2, Oct 2003.

[7] J. Sivic and A. Zisserman. Video google: Efficient visual
search of videos. In J. Ponce, M. Hebert, C. Schmid, and
A. Zisserman, editors, Toward Category-Level Object Recog-
nition, volume 4170 of Lecture Notes in Computer Science,
pages 127–144. Springer Berlin Heidelberg, 2006.

7

