RANSAC: RANdom Sampling And Consensus

Roland Angst
rangst@stanford.edu
www.stanford.edu/~rangst
The Need for RANSAC

- Why do I need RANSAC? I know robust statistics!
 - “Robust Statistics” Huber [1981]
 - M-estimator, L-estimator, R-estimators, …
 - Least Median of Squares (LMedS), …

- Breakdown point of an estimator
 - “Proportion of incorrect observations … an estimator can handle before giving an incorrect … result” [Wikipedia]

- Robust estimators can achieve breakdown point of 50%
 - For example: median

- Usually a non-linear, non-convex optimization problem needs to be solved
The Need for RANSAC

- **Problems**
 - Estimators for more complex entities (e.g., homographies, essential matrices, …)?
 - Inlier ratio of computer vision data can be lower than 50%

- **Hough Transform**
 - Excellent candidate for handling high-outlier regimes
 - Can only handle models with very few parameters (roughly 3)

- **RANSAC** is a good solution for models with slightly larger number of parameters
 - Roughly up to 10 parameters (depending on inlier ratio)
RANSAC [Fischler & Bolles 81]

- Hypothesize-and-verify framework
 - Sample hypothesis and verify with data

- Assumptions
 - Outliers provide inconsistent (i.e. random) votes for models
 - There are sufficiently many inliers to detect a correct model

- Hypothesis generation
 - Sample subset of data points and fit model parameters to this subset
 - Plain RANSAC: sample points uniformly at random

- Verification on all remaining data points
Algorithm Outline

1. Select random sample of minimum required size to fit model parameters
2. Compute a putative model from sample set
3. Verification stage: Compute the set of inliers to this model from whole data set
4. Check if current hypothesis is better than any other of the previously verified
5. Repeat 1-4
Algorithm Outline

1. Select random sample of minimum required size to fit model parameters
2. Compute a putative model from sample set
3. Verification stage: Compute the set of inliers to this model from whole data set
4. Check if current hypothesis is better than any other of the previously verified
5. Repeat 1-4
Number of Iterations

- Probability of selecting an inlier given by inlier ratio p_{inlier}
- Sample size s
- Confidence value for having sampled at least one all-inlier sample P
- Number of iterations k

Let’s put all of this together: $1 - P \geq (1 - p_{\text{inlier}}^s)^k$

<table>
<thead>
<tr>
<th>s</th>
<th>5%</th>
<th>10%</th>
<th>20%</th>
<th>25%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>19</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td>34</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td>17</td>
<td>26</td>
<td>57</td>
<td>146</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>7</td>
<td>16</td>
<td>24</td>
<td>37</td>
<td>97</td>
<td>293</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>8</td>
<td>20</td>
<td>33</td>
<td>54</td>
<td>163</td>
<td>588</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>9</td>
<td>26</td>
<td>44</td>
<td>78</td>
<td>272</td>
<td>1177</td>
</tr>
</tbody>
</table>

$k \geq \frac{\log(1 - P)}{\log(1 - p_{\text{inlier}}^s)}$

Probability of having selected at least one outlier in each of the k trials
RANSAC Parameters

- How to find inlier ratio?
 - Provide lower bound for initialization and recompute when new best hypothesis has been found

- Scale of inlier noise

- Confidence for having sampled at least one all-inlier sample
Shortcomings of ‘Plain’ RANSAC

- Scale of inlier noise (for inlier-outlier threshold) needs to be specified
- Correct model is not generated with user-defined confidence
- Estimated model might be inaccurate
- Degenerate cases not handled
- Can be sped up considerably
 - Better hypothesis generation
 - Faster verification schemes
- Multiple models
 - Model selection
 - Interesting problem, but not covered in remainder
Shortcomings of ‘Plain’ RANSAC

- Scale of inlier noise (for inlier-outlier threshold) needs to be specified
- Correct model is not generated with user-defined confidence
- Estimated model might be inaccurate
- Degenerate cases not handled
- Can be sped up considerably
 - Better hypothesis generation
 - Faster verification schemes
- Multiple models
 - Model selection
 - Interesting problem, but not covered in remainder
Noisy Inliers

- Problem: not every all-inlier-sample provides a good solution
 - Sampling more than one all-inlier-set might be necessary!
 - In practice, solution often found only after roughly $k = \left(\frac{1}{p_{\text{inlier}}} \right)^{\text{sample size}}$ iterations
 - Simple calculation $k \geq \frac{\log(1 - P)}{\log(1 - p_{\text{inlier}}^s)}$ is inaccurate
Shortcomings of ‘Plain’ RANSAC

- Scale of inlier noise (for inlier-outlier threshold) needs to be specified
- Correct model is not generated with user-defined confidence
- Estimated model might be inaccurate
- Degenerate cases not handled
- Can be sped up considerably
 - Better hypothesis generation
 - Faster verification schemes
- Multiple models
 - Model selection
 - Interesting problem, but not covered in remainder
Increase Accuracy of Estimated Models

- **Lo-RANSAC**
 - Run inner RANSAC loop with non-minimal sample size to refine hypothesis of minimal sample size
 - “Locally Optimized RANSAC” Chum, Matas, Kittler [DAGM03]

- **MLESAC**
 - Fit model by max likelihood rather than max inlier count
 - “MLESAC: A new robust estimator with application to estimating image geometry” Torr & Zisserman [1996]
Shortcomings of ‘Plain’ RANSAC

- Scale of inlier noise (for inlier-outlier threshold) needs to be specified
- Correct model is not generated with user-defined confidence
- Estimated model might be inaccurate
- Degenerate cases not handled
- Can be sped up considerably
 - Better hypothesis generation
 - Faster verification schemes
- Multiple models
 - Model selection
 - Interesting problem, but not covered in remainder
Handling Degenerate Cases

- “Two-view geometry estimation unaffected by a dominant plane” Chum et.al. [CVPR05]
 - Estimate fundamental
 - If successful try to fit homography to triplet of 7-cardinality MSS
 - If homography can be found run plane-and-parallax fundamental estimation
 - 2 points off the plane need to get fundamental from known homography
 - 2-pt RANSAC over outliers of homography
 - else non-planar case

- Other approaches for making RANSAC robust w.r.t. degeneracies
 - “RANSAC for (quasi-)degenerate data (QDEGSAC)” Frahm & Pollefeys [CVPR06]
Shortcomings of ‘Plain’ RANSAC

- Scale of inlier noise (for inlier-outlier threshold) needs to be specified
- Correct model is not generated with user-defined confidence
- Estimated model might be inaccurate
- Degenerate cases not handled

Can be sped up considerably
- Better hypothesis generation
- Faster verification schemes

- Multiple models
 - Model selection
 - Interesting problem, but not covered in remainder
Hypothesis Generation

- Trade-off between exploration and exploitation
 - Previously verified hypothesis tell us something about inlier set
 - Still, we should avoid narrowing our search too quickly
- Especially important for multi-model case
 - Eg. estimation of multiple planes in a scene
 - Points on other planes act as outliers to plane under consideration
PROSAC

- “Matching with PROSAC – progressive sample consensus” Chum & Matas [CVPR05]
- Use of a-priori knowledge
 - Confidence of a matching pair (e.g., based on descriptor matching distance)
- PROSAC: Favor high-quality matches while sampling points for minimal sample
 - Sort correspondences according to matching score
 - Consider progressively larger subsets of putative correspondences
 - Note: draws the same samples as RANSAC would, just in different order
- Pro
 - Can decrease the number of required hypothesis considerably
- Contra
 - Performance gain depends on data
 - Practical observation: high-confidence matches appear often appear in clusters on same spatial structure
 - Degenerate configurations…
Shortcomings of ‘Plain’ RANSAC

- Scale of inlier noise (for inlier-outlier threshold) needs to be specified
- Correct model is not generated with user-defined confidence
- Estimated model might be inaccurate
- Degenerate cases not handled
- **Can be sped up considerably**
 - Better hypothesis generation
 - Faster verification schemes
- Multiple models
 - Model selection
 - Interesting problem, but not covered in remainder
Verification

- Phrase hypothesis verification in sequential testing framework
 - Subsample remaining data and verify on this subset
 - If inlier ratio is sufficiently low: terminate verification

- Several papers have been published
 - Threshold determined based on T_d,d tests
 - “Randomized RANSAC with T_d,d test” Matas, Chum [IVC04]
 - Bail-Out test based on hyper-geometric distribution
 - “An effective bail-out test for RANSAC consensus scoring” Capel [BMVC05]
 - Wald’s Sequential Probability Ratio Test (WaldSAC)
 - “Optimal randomized RANSAC” Chum & Matas [PAMI07]

Speedup of 2-7 times compared to standard RANSAC according to:
“A Comparative Analysis of RANSAC Techniques Leading to Adaptive Real-Time Random Sample Consensus” Raguram et.al. [ECCV08]
Preemptive RANSAC

“Preemptive RANSAC for live structure and motion estimation” Nister [ICCV03]

Find a good estimate within a fixed time budget (eg. in a vSLAM system)

Idea
- Generate fixed number of hypothesis
- Verify all of them in parallel
 - Breadth-first verification scheme
 - Verify all hypothesis on a subset of the data
 - Prune unpromising hypothesis and retain promising ones
 - Verify on increasingly larger subsets, followed by pruning step
ARRSAC

- Adaptive Real-Time RANSAC
- Carefully designed combination of previous RANSAC approaches
- Achieves considerable speed-ups while still providing correct solution
- “A Comparative Analysis of RANSAC Techniques Leading to Adaptive Real-Time Random Sample Consensus” Raguram et.al. [ECCV08]
Further Evaluation and Comparisons

- “Performance Evaluation of RANSAC Family” Choi et.al. [BMVC09]

<table>
<thead>
<tr>
<th>Inlier Ratio</th>
<th>LMedS</th>
<th>RANSAC</th>
<th>MSAC</th>
<th>MLESAC</th>
<th>LO-RANSAC</th>
<th>R-RANSAC.T</th>
<th>R-RANSAC.C</th>
<th>FH MAPSAC</th>
<th>AMLESAC</th>
<th>GASAC</th>
<th>pbM-estimator</th>
<th>UMLESAC</th>
<th>RANSAC*</th>
<th>MLESAC*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.300</td>
<td>27.320</td>
<td>1.305</td>
<td>1.229</td>
<td>1.248</td>
<td>1.245</td>
<td>1.317</td>
<td>15.210</td>
<td>7.078</td>
<td>2.036</td>
<td>2.051</td>
<td>28.640</td>
<td>5.246</td>
<td>47.010</td>
<td>50.110</td>
</tr>
<tr>
<td>0.400</td>
<td>6.461</td>
<td>1.323</td>
<td>1.284</td>
<td>1.269</td>
<td>1.229</td>
<td>1.323</td>
<td>1.848</td>
<td>2.036</td>
<td>1.477</td>
<td>1.452</td>
<td>7.370</td>
<td>1.382</td>
<td>13.920</td>
<td>10.240</td>
</tr>
<tr>
<td>0.500</td>
<td>1.326</td>
<td>1.330</td>
<td>1.337</td>
<td>1.289</td>
<td>1.221</td>
<td>1.304</td>
<td>1.313</td>
<td>1.647</td>
<td>1.452</td>
<td>1.108</td>
<td>1.108</td>
<td>1.382</td>
<td>3.031</td>
<td>2.839</td>
</tr>
<tr>
<td>0.600</td>
<td>1.356</td>
<td>1.390</td>
<td>1.373</td>
<td>1.316</td>
<td>1.229</td>
<td>1.341</td>
<td>1.131</td>
<td>1.484</td>
<td>1.452</td>
<td>1.108</td>
<td>1.108</td>
<td>1.438</td>
<td>1.688</td>
<td>1.694</td>
</tr>
<tr>
<td>0.700</td>
<td>1.408</td>
<td>1.415</td>
<td>1.415</td>
<td>1.358</td>
<td>1.229</td>
<td>1.394</td>
<td>1.229</td>
<td>1.490</td>
<td>1.526</td>
<td>1.120</td>
<td>1.120</td>
<td>1.433</td>
<td>1.386</td>
<td>1.352</td>
</tr>
<tr>
<td>0.800</td>
<td>1.179</td>
<td>1.483</td>
<td>1.535</td>
<td>1.410</td>
<td>1.253</td>
<td>1.401</td>
<td>1.370</td>
<td>1.490</td>
<td>1.575</td>
<td>1.120</td>
<td>1.120</td>
<td>1.489</td>
<td>1.255</td>
<td>1.235</td>
</tr>
<tr>
<td>0.900</td>
<td>1.509</td>
<td>1.483</td>
<td>1.535</td>
<td>1.446</td>
<td>1.229</td>
<td>1.475</td>
<td>1.389</td>
<td>1.526</td>
<td>1.575</td>
<td>1.145</td>
<td>1.145</td>
<td>1.489</td>
<td>1.187</td>
<td>1.145</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mag. of Noise</th>
<th>LMedS</th>
<th>RANSAC</th>
<th>MSAC</th>
<th>MLESAC</th>
<th>LO-RANSAC</th>
<th>R-RANSAC.T</th>
<th>R-RANSAC.C</th>
<th>FH MAPSAC</th>
<th>AMLESAC</th>
<th>GASAC</th>
<th>pbM-estimator</th>
<th>UMLESAC</th>
<th>RANSAC*</th>
<th>MLESAC*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.250</td>
<td>1.379</td>
<td>1.385</td>
<td>1.389</td>
<td>1.364</td>
<td>1.219</td>
<td>1.396</td>
<td>1.353</td>
<td>1.458</td>
<td>1.479</td>
<td>1.098</td>
<td>1.258</td>
<td>1.361</td>
<td>1.389</td>
<td>1.357</td>
</tr>
<tr>
<td>0.500</td>
<td>1.372</td>
<td>1.380</td>
<td>1.319</td>
<td>1.341</td>
<td>1.224</td>
<td>1.363</td>
<td>1.325</td>
<td>1.557</td>
<td>1.499</td>
<td>1.100</td>
<td>1.272</td>
<td>1.232</td>
<td>1.379</td>
<td>1.326</td>
</tr>
<tr>
<td>1.000</td>
<td>1.295</td>
<td>1.315</td>
<td>1.306</td>
<td>1.309</td>
<td>1.202</td>
<td>1.286</td>
<td>1.413</td>
<td>1.513</td>
<td>1.942</td>
<td>1.110</td>
<td>1.264</td>
<td>1.069</td>
<td>1.409</td>
<td>1.330</td>
</tr>
<tr>
<td>2.000</td>
<td>1.256</td>
<td>1.282</td>
<td>1.246</td>
<td>1.262</td>
<td>1.203</td>
<td>1.232</td>
<td>1.583</td>
<td>1.395</td>
<td>1.192</td>
<td>1.115</td>
<td>1.296</td>
<td>1.025</td>
<td>1.440</td>
<td>1.388</td>
</tr>
<tr>
<td>4.000</td>
<td>1.228</td>
<td>1.259</td>
<td>1.193</td>
<td>1.218</td>
<td>1.222</td>
<td>1.180</td>
<td>1.618</td>
<td>1.406</td>
<td>1.164</td>
<td>1.124</td>
<td>1.306</td>
<td>1.051</td>
<td>1.552</td>
<td>1.468</td>
</tr>
</tbody>
</table>
Shortcomings of ‘Plain’ RANSAC

- Scale of inlier noise (for inlier-outlier threshold) needs to be specified
- Correct model is not generated with user-defined confidence
- Estimated model might be inaccurate
- Degenerate cases not handled
- Can be sped up considerably
 - Better hypothesis generation
 - Faster verification schemes
- Multiple models
 - Model selection
 - Interesting problem, but not covered here
Many different ‘flavours’

Still an active research area