Using Transfer Learning Between Games to Improve Deep Reinforcement Learning Performance
Chaitanya Asawa\textsuperscript{1}, Christopher Elamri\textsuperscript{2}, David Pan\textsuperscript{2}

\textsuperscript{1}Department of Computer Science, Stanford University, \textsuperscript{2}Department of Electrical Engineering, Stanford University

Motivation
The ability to successfully transfer learn is useful as it allows us to avoid having to train specific models for every task we may have (which takes much computational power and time), and rather achieve high performance quickly using what we have generally learned.

Background
- We aim to play two games with Deep Q-learning, Snake and PuckWorld, and hope to learn from one game for another
- Deep Q-learning has performed very well on Atari games in the past; it can generalize across huge state spaces
- In PuckWorld, an agent aims to stay around some target while avoiding a large red puck that slowly follows it
- In Snake, an agent collects food, growing longer each time, while trying to avoid running into itself or a wall

Preprocessing
- To have a better sense of direction (and velocity in the case of PuckWorld), we maintain a state history
- To reduce the input size, we use gray scale images instead of RGB images
- We skip a constant number of frames to play more games during training

Rewards
- Snake: -5 for running into itself/wall, +1 for collecting reward
- PuckWorld:
  - Function of distance to the green circle (want to be closer)
  - Negative reward proportional to distance from the red puck’s center if we are within the red puck’s radius.

Vanilla DQNs
- We used Deep Q-Networks that had 3 convolutional layers of 32 filters (size 3 by 3) with stride 1, followed by FC-256, and a final FC to the number of actions.
- In addition, we use experience replay and a target Q-network.

Dueling Network
Introduced by Wang et. al, separates value of state from advantage of state, action pairs

Dueling Network Performance

Transfer Learning
We then experiment with using the weights we learned from PuckWorld in terms of usefulness for playing Snake. We explore various combinations of two approaches:
- Retraining layers (so the weights can change)
- Reinitializing layers (starting from totally fresh weights)


Benefit of Transfer Learning
Introduced by Wang et. al, separates value of state from advantage of state, action pairs

Conclusion
- Factors such as size of state history can make it more challenging for DQNs to learn
- We see in playing Snake oscillating rewards over time. We hypothesize that the Snake has difficulty adjusting to its longer length and takes less optimal actions.
- Transfer learning can help with both reward oscillation and improving performance.

Future Directions
While we found success in transferring PuckWorld weights to Snake, we’d ideally like to see if this scheme generalizes to more games using the same weights – both similar ones and different ones.