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Abstract

Chinese chess has long been viewed as one of
the most popular board games in China. It has
a larger state and action space than chess, hence
greater difficulty for Al to conquer. Many pre-
vious work focused on search based algorithm
or simple TD learning to tackle Xiangqi. How-
ever, in this project, we propose a deep reinforce-
ment learning based algorithm inspired by Al-
phaGo. We first used supervised learning to ini-
tialize player agent and use reinforcement learn-
ing algorithms to update the players against a
commercial Xiangqi agent called Elephant Eye.
We are able to achieve a consistent 56% win rate
over Elephant Eye evaluated in 100 games.

1. Introduction

Xiangqi is a traditional chess game much like chess it-
self with unique pieces and different rules to move these
peieces. In terms of game tree complexity, Xiangqi sur-
passes Chess with a branching factor of 38 and game tree
complexity of 150 compared to branching factor of 35 and
game tree complexity of 123 to Chess. The board for Xi-
angqi is also larger: a 10 x 9 board with 17 pieces on each
side. In addition, there are also additional restraints and
conditions imposed on the way Xiangqi pieces move. For
instance, the King equivalent of Chess in Xiangqi cannot
leave a set “Palace”, a 3 x 3 grid in the middle of each side.
Differences aside, there are significantly less research on
autonomous player for Xiangqi. Most existing researches
explore search based methods and evaluate against a com-
mercial agent Elephant Eye. In this project, we propose a
deep method of encoding game states and devising poli-
cies to play Xiangqi inspired by methods and principles
employed by AlphaGo.

The following paper is structured as follow: Section 2 will
introduce some current research into Xiangqi Agent. Sec-
tion 3 will introduce our dataset and environment. Section
4 and 5 will discuss approaches we have experimented and
their experimental results. Section 6 and 7 will offer in-
sights on some challenges and future work and a conclu-
sion.

2. Related Work

Early reinforcement learning based agent for board games
such as Chess or Xiangqi first originated in TD-Gammon
by Tesauro (Tesauro, 1995). In his paper, he first used a
neural network to approximate the value of a board state
and applied TD learning on the game Backgammon, a pop-
ular board game at the time. Inspired by Tesauro’s work,
Yin et. al first proposed applying Temporal Difference
learning on Xiangqi (Yin & Fu, 2012). Current day Xiangqi
research focuses on primarily two different categories: 1)
advancing search based algorithms, 2) new state evaluation
functions. An example of former category of research is by
Liu et. al, who devised a variation of alpha-beta pruning for
Xiangqi aimed at learning state search at end games (Liu
& Guo, 2012). On the other hand an example of latter
category is by Fu et. al, who applied a three layer feed
forward neural network, combined with information from
prior heuristic, to obtain a new evaluation function for the
value of a position (Fu & Yin, 2012). However, with the
rise of deep learning methods, we now have tools to encode
more complex information about the board state. Such
methods have been employed in other games like Chess
or Go. Lai first applied deep reinforcement learning to pro-
duce Giraffe. In this work, a multi-layered perceptron net-
work was used to encode the value of a board state to per-
form TD learning (Lai, 2015). A more recent and highly
impactful work is AlphaGo by DeepMind. In this work, a
deep convolutional neural network is used to approximate
both policy and value of a game board (Silver et al., 2016).
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Figure 1. Example Xiangqi Board
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Figure 2. Shared Network Structure: 5-layer Residual Network

In our project, we will closely follow strategies employed
by AlphaGo: we will first use supervised training followed
by reinforcement learning.

3. Dataset
3.1. Dataset

To complete the aforementioned task, we have scraped
70,000 complete expert games from a database for Xi-
angqi, each with on average of 100 moves. Each move is
in Xiangqi notation style. We have also built up an envi-
ronment Xiangqi environment that allows us to virtually
replay these 70,000 games to produce 5,595,966 unique
board state without the draw games. We used this dataset
in the supervised setting by splitting the dataset into 80%
of training data and 20% of validation data. To prevent the
network from memorizing the game state itself instead of
evaluating the board, we split the dataset based on game:
board states from one game is either entirely in train set or
validation set.

Results Percentage
Red win 37.78%
Black win 27.90%
Draw 34.32%

Table 1. Distribution of Game Results in Scrapped Dataset

3.2. Environment

As mentioned before, we have implemented a chinese
chess environment that will be core of our agents interac-
tion with the opponent. The use for this environment is
as followed. 1) We use this environment to generate the
dataset from Xiangqi Notation to independent board posi-
tions that we use to perform supervised learning. 2) We use
this environment to generate all possible next board states
following the current one for evaluating each board state to
determine the next state with highest value via our network

in the reinforcement learning setting. 3) Integrate with Ele-
phant Eye (Eleeye), a commercial Xiangqi agent. And 4)
Allows the network to self-play to learn the end-game sce-
narios.

4. Approach

In this section, we will discuss in details three methods we
experimented to create a Xiangqi agent. These approaches
include value based method, policy based method, and
actor-critic method. In the value based method, our net-
work approximates the value of the given state based on
each player; in the policy based method, our network in-
stead predicts the policy, namely the next move taken by
the player, given the board state; in actor-critic method, a
network predicts the next move and approximates an ad-
vantage estimate on the predicted policy. The network ar-
chitecture for these methods are very similar. Each of these
networks takes a vectorized, one-hot encoded board state as
input. They also share the same stem of network and only
differ by the last few output layers. The shared portion is
a 5-layer Residual Network with 2048 hidden neuron per
layer as demonstrated in Figure 2. No convolution layer is
used in any methods.

Each of the method can be split into three distinct phases:
supervised learning, reinforcement learning with Eleeye,
and reinforcement learning through self-play. The first
stage of the three is supervised learning. Depending on
the method, we can create training criteria on each of the
5,595,966 unique game positions scrapped from the Xi-
angqi database. The point of this supervised learning stage
is to bootstrap reinforcement learning with some prior in-
formation learned from expert moves. The second stage
of the three is reinforcement learning by playing against
Eleeye. In this stage, our network will be updated with
both our experiences playing against Eleeye and their ex-
perience from play against us. The last stage is self-play. In
this stage, our agent will play against a past variant of itself
to further increase the strength of its policies. In the fol-
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lowing subsections, we will discuss in detail each method
we experimented.

4.1. Value Based Method
4.1.1. SUPERVISED LEARNING

We trained the value network via supervised learning, fol-
lowed by Temporal Difference learning. We trained a deep
residual value network that takes board positions as input,
and outputs a single value between -1 to 1, with -1 being a
lost game, O being a draw, and 1 being a win. The input is
the chess board encoded as a 1-D one-hot vector, with di-
mension being board_height x board_width = n_pieces =
10 * 9 * 17 = 1530. The pieces dimension encodes
all pieces from both players (King, Assistant,
Bishop, Knight, Rook, Cannon, Pawn,
Pawn_across_river), as well as empty cell, for a total
of 8 + 8 + 1 = 17 piece types.

We doubled the training data by switching perspective be-
tween red and black players. For example, a red players
board position corresponding to a win, would become a
black players position corresponding to a loss when the
board is rotated 180 degrees. The labels are discounted
sum of future rewards:

R=> 4z (1)

t

+1  win
Z= 0 draw )
—1 loss

Where reward is only non-zero at end of game (z). By us-
ing discounted sum of future rewards as training label, the
network can prioritize value over states closer to a terminal
state.
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(a) Value Net: output layer  (b) Policy Net: output layer
4.1.2. REINFORCEMENT LEARNING

We subsequently trained the RL agent via reinforcement
learning, by initializing the same value network with

weights learned from supervised learning. We trained the
RL agent via TD learning, by minimizing the following ob-
jective:

Elr(s,a) + 7V (s') = V(s)] ©)

Where the transition is deterministic s’ < s,a. Each ac-
tion is chosen with e-greedy probability epsilon. At each
step, we generate all legal next states of the chess board,
feed them through the value network to obtain the values
for all next states. With probability 1 - € the agent picks
the action yielding the highest value for next state. With
probability e the agent chooses an action by random. € is a
hyperparameter.

We used double Q-learning (Van Hasselt et al., 2016) as
the reinforcement learning algorithm . Double Q-learning
works by using two sets of weights, one for the Q-network
and one for the target network. The two networks are
swapped with some probability (we chose 50%) after a
fixed number of iterations.

Experience replay is used to break the temporal depen-
dency between actions. Experience replay helps the net-
work converge faster in situations where the reward signal
is sparse (Lin, 1993), for instance when an agent only re-
ceives award at the end of the game. Using naive TD learn-
ing with exploration, it would take an unreasonable amount
of trials to propagate the reward through the early states.
We allocated an experience buffer to store (state,
action, next_state, reward) tuples. At back-
propagation time, we sample a batch of experience tuples
from the buffer to update the weights of network.

4.2. Policy Based Method
4.2.1. SUPERVISED LEARNING

We then formulated the problem from a policy perspective.
A policy network takes state as input and outputs action
probabilities. In the domain of Chinese Chess, a brute force
way to list all possible moves is huge, due to the large prod-
uct of grid cells, piece types, and move options. Therefore
we chose an efficient output space of two vectors, each with
size board_width x board_height = 10 x 9 = 90 (spa).
One vector represents the from-coordinate of a piece, while
the other vector represents the to-coordinate of a piece. The
policy network takes one-hot encoding of chess board as in-
put. We trained the policy network with the scraped state -
action pairs.

4.2.2. REINFORCEMENT LEARNING

During reinforcement learning phase, we used the learned
network from supervised learning phase to train the agent.
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When taking a step, we feed the current board state into the
network. The network outputs two probability distribution
over from-coordinates and to-coordinates. We calculate the
joint probability of all legal moves, and select the move
with the highest joint probability:

Pmove = Pfrom : Pto (4)

During reinforcement learning, we used vanilla policy gra-
dient to train our agent.

Ve (0) = E[Vglogn(s,a)A(s, a)] Q)

Where the advantage is

A=> "4z (6)
t

We initially played our agent against Elephant Eye, an
open-source Chinese Chess Al. Since our agent initially
loses all the games against Elephant Eye, experience from
both the RL agent and Elephant Eye are used for TD learn-
ing. The intuition is that, by providing balanced positive
(winning) and negative (losing) examples, our network is
able to learn good behavior, and at the same time avoid bad
behavior.

4.3. Actor-Critic Method

Policy gradient is prone to variance, where a tiny policy
gradient step in the wrong direction could result in a dis-
astrous policy useless for learning. In order to reduce the
variance of policy updates, we used Actor-Critic learning
to train our RL agent, by initializing the policy network
and value network using weights learned from supervised
learning phase.

Actor-Critic method works by using one policy network to
predict the actions, and another network to predict the value
of a state. The policy network is trained via policy gradient:

Ve (0) = E[Vglogn(s,a)A(s, a)] ©)

The value network is trained via TD learning:

min{E[r(s,a) +yV(s') = V(s)|} (8)

We used Generalized Advantage Estimation (Schulman
et al., 2015), where advantage is defined as:

AGAE =3 (YN i ©)
l

(St =T¢ +’)/V(St+1) — V(St) (10)
We experimented with two network architectures:

e Separate networks: we used two separate networks,
one for policy network and one for value network.

e Shared network: we used a single network with shared
bottom layers, and outputs both action probabilities
and state value. The hope here is to use multi-task
learning to help the network transfer knowledge be-
tween two tasks.

Both architectures are first trained via supervised learning,
and then via actor-critic reinforcement learning.

5. Experiment

In this section, we will present experimental results for all
three different methods in both supervised learning stage
and reinforcement learning stage. All of our experiments
are trained on a single NVIDIA GeForce GTX TITAN
GPU.

5.1. Value Based Method
5.1.1. SUPERVISED LEARNING

For training a value network, as suggested by the previ-
ous section, the output of our value network is a regression
value. After 6 epochs of training, we are able to achieve
a validation loss of 0.1877 with discount factor v = 0.98.
Droppout of 0.5 is used whereas no batch normalization
is applied. For reference, we employed the same kind of
value evaluation scheme with that of AlphaGo where they
achieved a validation loss of 0.23.

5.1.2. REINFORCEMENT LEARNING

For the reinforcement learning section, the performance of
TD learning proves to be less than satisfactory. We ap-
plied TD learning with experience replay on both Agent’s
experience and Eleeye’s experience. After 7000 epochs of
2500 games each of playing against Eleeye, Value Network
is able to reduce the error objective of Q-learning down
to 0.05. We experimented multiple representation of the
board: both one-hot encoding of all pieces and direct repre-
sentation of the board given a heuristic value of each piece.
However the win rate against even the easiest Eleeye set-
ting is still 0 evaluated over the past 100 games after 7000
epochs of training.
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Figure 3. Win rate of self-play over time across generations

5.2. Policy Based Method
5.2.1. SUPERVISED LEARNING

For training a policy network, the output of our network
becomes two vectors of length 90 to encode the broad po-
sition that the player should move from and move to. After
11 epochs of training, we are able to achieve a validation
accuracy of 46.29% on move from position and 60.33% on
move to position. Both batch normalization and dropout
keep probability of 0.4 is used. For reference, AlphaGo got
a 55% validation accuracy on supervised training of pol-
icy network, with only one output probability because each
stone and position are encoded equivalently in Go. Train-
ing graph for supervised learning is provided in Figure 4.
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Figure 4. Policy Network Accuracy over time

5.2.2. REINFORCEMENT LEARNING

For the reinforcement learning stage, agent makes decision
based on the max probability legal move paired with RE-
INFORCE algorithm to update the policies. However, once
again, playing against Eleeye does not offer us much gain.
The our win rate against Eleeye is kept consistent at 0%.

On the other hand, we are able to observe some results
from self-play. For self-play, we have two agents initial-
ized to policy network from supervised training, but only
one agent is received gradient updates. We call a gener-
ation to be an extended period of time before either 2000
epochs or the updated agents has a 80% win rate over the
un-updated agent. Our observed result was that the agent
quickly learns from playing against itself. About after 5
generations, the win rate of updated agent plateaus at 50%
at generation 6. Win rate with respect to training epochs are
shown for each of the 6 generations in Figure 3. However,
when we evaluate the agent against Eleeye, our win rate
is 1%. When we manually examine each steps our agent
makes, we found out that the agent is able to learn some
standard opening moves as well as taking and defending
crucial pieces.

5.3. Actor-Critic Method
5.3.1. SUPERVISED LEARNING

For using actor critic method, we combine the value net-
work and policy network from both previous method. The
output of our network is both the single dimension regres-
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sion value and two position vectors of length 90. After
13 epochs of training, we are able to achieve a validation
loss of 0.192 on value regression and validation accuracy of
42.49% on move from position and 56.91% on move to po-
sition on policy prediction. Both batch normalization and
dropout of 0.4 is used. Training graph is provided in Figure
ot
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5.3.2. REINFORCEMENT LEARNING

Very similar to policy based method, for the reinforcement
learning stage, agent makes decision based on the max
probability legal move. In order to explore the state and
action space enough, we decided to sample action based on
the softmax probability that our policy network produces
rather than just taking an argmax. REINFORCE algorithm
is once again used but with a twist. We employed many dif-
ferent techniques to both reduce variance and ensure prop-
agation of information. We also use generalized advantage
estimate — we calculate the advantage function through the
value output of the state compared to the immediate reward
plus a discounted value of the resulting state. This advan-
tage function is used to compute the gradients to further
reduce variance that we encounter.

Through this method, we are able to achieve great results:
after around 700 epochs of 2500 games each, we are able to
achieve a win rate of consistently 56% against Eleeye. Al-
though this version of Eleeye is not the strongest version of
the Xiangqi agent, we are able to achieve a non-trivial win
rate. After careful observations, we are able to see that even
in games that DeepShuai draws with Eleeye, DeepShuai is
able to make sensible moves.

6. Challenges and Future Work

The main challenges that we face throughout the project
is on the reinforcement learning part. We achieved close
to state-of-the-art results in the supervised learning phase
of all three methods. Yet the RL results for the first two
methods are less than satisfactory.

For our RL models, training and validation loss steadily de-
crease but we fail to transfer decreasing loss into actual win
games. For our actor-critic method, we did achieved over
50% win rate. Yet after reading the log, we realized that we
almost always won the game in the exactly same way. The
reason is that Elephant Eye is a deterministic Al agent and
we also only won the game if our agent played first. As
training progressed, we failed to further increase our win
rate and started to overfit to this particular opponent. We
have tried to use e-greedy to add randomness to the system
to see if our agent can beat Elephant Eye if Elephant Eye
plays first. We haven’t achieved good results as the model
quickly diverged to 0 win rate again.

Another challenge is that since we lose most of the games
to Elephant Eye in the reinforcement learning phase, our
agent basically “unlearns” what it has learned from super-
vised learning, especially for the first two methods, because
it decreases the probability of its action for a lost game.
Furthermore, we found policy gradient method relatively
unstable and we experienced multiple loss and gradient ex-
plosion when training REINFORCE.

For future work, we would love to try Monte Carlo tree
search (MCTS) on top of our value network to have a more
accurate heuristic. We also want to introduce trust region
policy optimization (TRPO), which has proven to be more
stable than the vanilla policy gradient method. Further-
more, we need to develop a better exploration mechanism
for actor-critic system when playing against a determinis-
tic Al to avoid overfitting. Lastly, we want to try Asyn-
chronous Actor-Ceritic to speed up our training time.

7. Conclusion

In conclusion, in this study, we proposed and experimented
several deep reinforcement learning based approach for
an autonomous Xiangqi agent, including Value-based net-
work with TD learning, Policy-based network with RE-
INFORCE, and actor-critic-based network with REIN-
FORCE. Among them, actor-critic based method signifi-
cantly out performs other variants and achieved 56% win
rate against Eleeye. This study shows that Xiangqi, much
like Go or Chess, can be tackled with non-traditional meth-
ods other than search. This work also opens up the gate to
many future work, for we have also mapped out many po-
tential pitfalls and problems future research may encounter
in attempting to create stronger agents.
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