DeepShuai: a Deep RL Agent for Chinese Chess

Zihua (James) Liu, Kedao (Keven) Wang, Chengshu (Eric) Li
Project Mentor: Steven Hansen, Department of Psychology

Introduction

We used Reinforcement Learning to train a neural network to play Xiangqi (interchangeably Chinese Chess). Xiangqi is a traditional chess game much like chess itself. In terms of game tree complexity, Xiangqi is more complex than chess with a larger board and action space. To evaluate the performance of our agent, we will play our agent against a feature based, open source Xiangqi agent called Elephant Eye as did many relevant literature.

Environment

We implemented a Chinese chess environment that will be the core of our agent’s interaction with the opponent. The use of this environment is as followed.

- Generate dataset from Xiangqi Notation of 7,000,000 independent board positions for supervised learning
- Generate all legal moves given the current state
- Integrate with Elephant Eye, a commercial Xiangqi agent
- Allows the network to self-play to learn the end-game scenarios.

Data

- 70,000 complete expert Xiangqi games from an online Xiangqi database,
- On Average 100 moves per game
- Total of 5,595,966 unique game positions with drawed games.
- 80% - 20% of train-validation data split.
- Augmented dataset by including both player perspective with opposite win/loss label.

Results

<table>
<thead>
<tr>
<th>Results</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red win</td>
<td>37.78%</td>
</tr>
<tr>
<td>Black win</td>
<td>27.90%</td>
</tr>
<tr>
<td>Draw</td>
<td>34.32%</td>
</tr>
</tbody>
</table>

Approach

Like AlphaGo, we first used supervised learning to bootstrap RL. We represent each board state with an one-hot tensor and feed them into a 5 layer ResNet. We trained a value network and a policy network separately, using the same architecture, except the final layer.

SL: Value Network

Output an estimated value of this state - a real number between -1 to 1, exponentially decayed by discount rate gamma.

\[V(s) = \text{softmax}(W^T h_s) \]

SL: Policy Network

- Output a stochastic action, i.e. the distribution over the start position and the end position, represented by two 90-dimensional vectors
- Final action is chosen by taking the argmax of the element-wise product among all legal moves

\[L = -\log(\max(P_{\text{start}} \times P_{\text{end}})) \]

RL: Value TD Learning

We used value network learned in supervised learning to extract a policy: choose the next state that corresponds to the highest value. We trained our network against Elephant Eye, a commercial Chinese Chess AI. Double Q learning is employed

\[L = (r + \gamma V(s', \bar{w}) - V(s, \bar{w}))^2 \]

RL: Policy Gradient

We also used REINFORCE algorithm to train our agent. Moves agents made that lead to a winning game are treated as reward 1 and -1 otherwise. REINFORCE algorithm allows us to maximize probabilities for more positive actions and decreasing the probability of taking negative actions.

Result

Supervised Learning:

- Value Network is trained on 7,000,000 expert move evaluated via RMSE. This method achieved a validation loss of 0.1877 with gamma = 0.98.
- Policy Network is trained on the same data evaluated via joint softmax loss between ‘move-from’ and ‘move-to’ position. This method achieved a 19.28% accuracy on move-from position and 27.57% on move-to position.

Reinforcement Learning:

To evaluate the game-play, we played our agent against a previous self, or vs. Elephant Eye. We use the winning percentage against Elephant Eye, a popular Chinese Chess AI used in prior work, to evaluate our network’s performance.

Particularly for self-play, we fixed weights for one agent and update the other. When the updated agent has over 80% win rate over the old agent, we update the old agent with the new weights, i.e. a new generation. Belows are some win rate graphs for different generations.