Adversarially Robust Policy Learning through
Active Construction of Physically-Plausible Perturbations

Ajay Mandlekar, Yuke Zhu, Animesh Garg, Li Fei-Fei, Silvio Savarese

Abstract

Policy search methods in reinforcement learn-
ing have demonstrated success in scaling up to
larger problem sizes beyond toy examples. How-
ever, deploying these methods on real robots re-
mains challenging due to the large sample com-
plexity required during learning and their vulner-
ability to malicious intervention. We introduce
Adversarially Robust Policy Learning (ARPL),
an algorithm that leverages active computation of
physically-plausible adversarial examples during
training to enable sample-efficient policy learn-
ing in the source domain and robust performance
under both random and adversarial input pertur-
bations. We evaluate ARPL on four continu-
ous control tasks and show superior resilience to
changes in physical environment dynamics pa-
rameters and environment state as compared to
state-of-the-art robust policy learning methods.

1. Introduction

Renewed research focus on policy learning methods in
reinforcement learning have enabled autonomy in many
problems considered difficult until recently, such as video
games with visual input (Mnih et al., 2015), the determin-
istic tree search problem in Go (Silver et al., 2016), robotic
manipulation skills (Levine et al., 2016b), and locomotion
tasks (Lillicrap et al., 2015).

Imagine an autonomous robot making a parcel delivery. Al-
though an all-out malicious attack can take down the robot,
the robot might also be vulnerable to more subtle adversar-
ial attacks. For example, a smart attacker could create a
man-in-the-middle style attack which alters the policy be-
havior only slightly so as to evade detection but get the par-
cel delivered to himself at an unintended location resulting

'Department of Computer Science, Stanford University. Cor-
respondence to: Ajay Mandlekar <amandlek @stanford.edu>.

Proceedings of the 34" International Conference on Machine
Learning, Sydney, Australia, 2017. JMLR: W&CP. Copyright
2017 by the author(s).

1

in endemic losses. While this is a hypothetical scenario,
with increasingly pervasive autonomy in both personal and
public spaces, it is a real threat.

As we move towards deploying learned controllers on
physical systems around us, robust performance is not only
a desired property but also a design requirement to ensure
the safety of both users and system itself. Machine learning
research has shown that a spectrum of models, including
RL algorithms, are vulnerable to malicious attacks (Bar-
reno et al., 2006; Biggio et al., 2013; Behzadan & Munir;
Huang et al.). Recent works have studied the existence of
adversarial examples (Szegedy et al.; Goodfellow et al.;
Papernot et al.); and showed that such instances are not
only easy to construct but are also effective against differ-
ent models trained for the same task.

While successful, policy search algorithms, such as vari-
ants of Q-Learning (Mnih et al., 2015) and Policy Gradi-
ent methods (Lillicrap et al., 2015; Schulman et al., 2015),
are highly data intensive. Furthermore, non-linear function
approximators such as deep neural networks can worsen
the data dependence. Hence, a naive approach that utilizes
joint training over an ensemble of domains to achieve ro-
bustness can quickly become intractable.

This paper is a step towards addressing the problem of ro-
bustness to malicious attacks while maintaining data effi-
ciency in training. The key intuition of this study is that —
adversarial examples can be used to actively choose per-
turbations during training in the source domain. This pro-
cedure exhibits robustness to both modeling errors and ad-
versarial perturbations on the target domain without an in-
crease in data-requirement. In particular, we explore train-
ing in simulated continuous control tasks for evaluation
across varied simulated target domains. We analyze the
effect of perturbations on the performance via three kinds
of modeling errors: model parameter uncertainty, process
noise, and observation noise.

Summary of Contributions:

1. We demonstrate that deep RL policies are susceptible
to both adversarial perturbations and model-mismatch
errors.

Adversarially Robust Policy Learning (ARPL)

124111

ol || |/// /A3
sl | [[///11/111114) 6"

i MU

Figure 1. A walker-2d agent trained on a fixed set of param-
eters would be sensitive to noises in dynamics, process, and ob-
servation. We propose a robust training method, ARPL, based
on adversarial examples to enhance the robustness of our model
against uncertainty.

2. We propose a method to synthesize physically-
plausible adversarial perturbations for a white-box
model. Further, we present Adversarially Robust Pol-
icy Learning method to use actively chosen adversar-
ial perturbations for robust policy training.

3. We evaluate our method in 4 simulated environments
with many policy training variations in each and ob-
serve that training with ARPL results in improving cu-
mulative reward.

2. Related Work
2.1. Deep Reinforcement Learning

Recent interest in reinforcement learning has resulted in
the resurgence of many classical algorithms that now use
neural network function approximators, enabling problems
with larger state and action spaces (Mnih et al.; 2015; Lil-
licrap et al., 2015). However, these methods are often
sample-inefficient and used mainly in simulated domains.
Policy rollouts on target domain with real world robot con-
trol are expensive and hence require sample efficient pol-
icy learning. Despite recent results on robot reinforcement
learning (Levine et al., 2016b; Rusu et al., 2016b), the data
requirement for these studies has been very large, prompt-
ing cynicism towards application to tasks with dynamic
motor skills.

A common approach to circumvent the sample com-
plexity problem of model-free methods, is utilizing
sample-efficient model-based reinforcement learning ap-
proaches (Kober et al., 2013). Source simulated models
approximate the target real-world domain and provide a

computationally cheap way to learn policies. However, the
main challenge in a source to target transfer is the system-
atic discrepancy between the two domains (Taylor & Stone,
2009).

2.2. Transfer in Reinforcement Learning

Transfer in RL algorithms to adapt across variations in
modeling errors is both important and an active area of
current research. The transfer problem has been exam-
ined from different perspectives, such as changing dynam-
ics (Rajeswaran et al.), varying targets (Zhu et al., 2016),
and multiple tasks (Devin et al., 2016; Rusu et al., 2016a).
Taylor et al. provide an excellent treatise on the transfer
learning problem (Taylor & Stone, 2009). A series of ap-
proaches focused on reducing the number of rollouts per-
formed on a physical robot by alternating between policy
improvement in simulation and physical rollouts (Abbeel
et al., 2006; Levine et al., 2016a). After each physical roll-
out, a time-dependent term is added to the dynamics to ac-
count for unmodeled error. This approach, however, does
not address robustness in the initial transfer, and the system
could sustain or cause damage before the online learning
model converges.

In contrast to previous work, we show that using actively
chosen perturbations of the environment dynamics and ob-
servations noise models can result in a more robust pol-
icy in target domain during testing than randomly sampled
source domains.

2.3. Adversarial Examples in Supervised Learning

Concurrent with RL, another concern that is increasingly
taking center-stage is resilience and robustness of the
learned policies when deployed on critical systems. Ma-
chine learning researchers have been exploring the effect
of adversarial attacks in general machine learning mod-
els (Barreno et al., 2006) and investigating both the ro-
bustness and security of the models. Sequential decision
making is inherently vulnerable because of the ability of an
adversary to intervene through both changing the underly-
ing dynamics or the observations (Biggio et al., 2013). For
instance, in an autonomous driving scenario, an adversary
may disrupt the controller by adding structured jitter to the
camera images or by changing the paint color on a STOP
sign.

The notion of minimal perturbation of test-time input, im-
perceptible to the human eye, to lead to misclassification
in Deep Neural Network (DNN) models was first shown
for computer vision applications in Szegedy et al. (Szegedy
et al.). This has fueled an exciting direction in both de-
tection and synthesis of adversarial examples (Goodfellow
et al.; Kurakin et al.; Papernot et al.; Moosavi-Dezfooli
et al.), and efforts to safeguard against such malicious at-

Adversarially Robust Policy Learning (ARPL)

tacks (Gao et al.; Grosse et al.; Moosavi-Dezfooli et al.,
2016). It has since been discovered that adversarial inputs
for computer vision models can be computed with minimal
compute effort (Goodfellow et al.), can be applied to phys-
ical print-outs of pictures (Kurakin et al.), and can be found
almost universally for any given model (Moosavi-Dezfooli
et al.). Furthermore, pre-designed adversarial attacks to re-
liably quantify the robustness of these classifiers have been
explored in (Papernot et al.) and (Moosavi-Dezfooli et al.,
2016). And finally, researchers have also explored meth-
ods to secure models against malicious attacks. Grosse et
al. (Grosse et al.) show that adversarial examples are not
drawn from the same distribution than the original data, and
can thus be detected using statistical tests. Gao et al. (Gao
et al.) presents a method that limits the capacity an attacker
can use generating adversarial samples and therefore in-
crease the robustness against such inputs.

2.4. Robust and Adversarial Learning in Robotics

Robust control for modeling errors has been widely studied
in control theory. An excellent overview of methods is pro-
vided in the book by Green & Limebeer (Green & Lime-
beer, 2012). In the problem of robust transfer, we are inter-
ested in parametric uncertainty between source and target
models. Nilim et al. (Nilim & El Ghaoui, 2005) and Mastin
et al. (Mastin & Jaillet, 2012) have analyzed the bounds on
the performance of transfer in the presence of bounded dis-
turbances in dynamics. Risk-sensitive and safe RL. methods
have been proposed to handle uncertainty while enabling
safety, as reviewed in (Garcia & Ferndndez, 2015). These
methods model belief priors over the target domain and
preserve safety guarantees similar to robust control. How-
ever scaling both robust control methods and risk-sensitive
RL methods beyond very simple examples has been a chal-
lenge.

Recent studies on robust policy learning for transfer across
domains have adapted ideas from robust control and risk-
sensitive RL to propose simplified sampling-based meth-
ods for training. In particular, Rajeswaran et al. (Ra-
jeswaran et al.) propose a method of sampling dynamics
parameters over a prior during training to improve policy
robustness to a similar but unseen target setting. Further,
Yu et al. (Yu et al.) propose a similar robust policy learn-
ing method through adding parameters to the system state
and with the additional option of performing an online es-
timate of dynamics. Both of these methods use random
sampling methods which can be computationally challeng-
ing for realistic domains where training a single policy on
a stationary MDP is hard enough.

Additionally, it is worth noting that a majority of the studies
in adversarial perturbations have been for supervised learn-
ing models. Recent works by Huang et al. (Huang et al.)

and Behzadan et al. (Behzadan & Munir) have illustrated
the existence and effectiveness of perturbations in RL. The
study in (Behzadan & Munir) shows that perturbations can
be constructed to prevent training convergence, and Huang
et al. (Huang et al.) demonstrate the ability of an adversary
to interfere with the policy operation during test time.

This work is, to the best of our knowledge, one of the
first studies to examine physically plausible perturbations
to not only observations but also to cause a systematic shift
in dynamics that result in a predictably worse policy per-
formance. Furthermore, we also propose an algorithm to
leverage adversarial perturbations to train policies that are
robust to a wide range of perturbations in dynamics and
observations.

3. Approach

3.1. Adversarial Perturbations in Deep Neural
Networks

Szegedy et al. (Szegedy et al.) discovered the insightful fact
that deep learning models are highly vulnerable to adver-
sarial examples. Furthermore, these adversarial examples
exhibit a remarkable generalization property - a variety of
models with different parametrization are often fooled by
the same adversarial example, even when these models are
trained on different subsets of the training data.

Methods of creating adversarial examples rely upon max-
imizing the prediction error subject to a constraint on the
perturbation size. In image classification, the objective
is switching prediction classes, while minimizing the per-
ceived image perturbation. In reinforcement learning, the
objective is to misguide the policy to output incorrect ac-
tions, while minimizing the change in either the input state,
the dynamics model, or the observation model. One of the
most prevalent methods for generating adversarial exam-
ples is the Fast Gradient Sign Method (FGSM) by Good-
fellow et al. (Goodfellow et al.). FGSM offers computa-
tionally efficiency at the cost of a slight decrease in attack
success rate. The FGSM method makes a linear approxi-
mation of a Deep Neural Network and maximizes the ob-
jective in a closed form.

FGSM focuses on adversarial perturbations of an image in-
put where the change in each pixel is limited by €. With
a linear approximation of a DNN, #(s) = w's, the optimal
FGSM perturbation is defined as, § = £sign(w). Since we
define 6 to be the perturbation, the output of the network
on the adversarial example § is #(§) = w's +w'8. Now
assuming that the network output 7(s; 6) is instead a non-
linear function parametrized by 6, then a linearization of
the loss function around the current input provides the fol-
lowing perturbation

Adversarially Robust Policy Learning (ARPL)

8 = esign(Vyn(mo(s))) (FGSM) (1)

where 7 is a loss function over the policy 7, which is
parametrized by parameters 6. Moreover, we note that a
key assumption in FGSM is that the attacker has complete
access to the target neural network — such as its architec-
ture, weights, and other hyperparameters. This is a white-
box setting. In contrast, in a black-box setting, the attacker
does not have access to the parameters of the target net-
work but only the output. Previous works have studied the
black-box setting where gradient computation can be done
numerically, and the attacker has unlimited query access to
the oracle. A common approach is to re-train a separate
model for the same input and output space and leverage the
transferability of the adversarial examples to attack the tar-
get policy. We restrict our analysis to a white-box setting
because training the policy with numerical gradient esti-
mates is no more efficient than computing the gradient on
the original policy.

3.2. Physically Plausible Threat Model

Consider a physical dynamical system:
X1 =f (p,us) +v (Dynamics)

2
% =g(x)+ o @

(Observation)

where the Dynamics equation updates the state x with
control input u according to a function f, parametrized
by model parameters u, and process noise V. The
Observation model maps the current state x to the ob-
served state z with the observation function g and observa-
tion noise ®.

We use the full gradient method instead of the popular
FGSM. FGSM is primarily designed for images where the
state is high dimensional and approx. IID. However, for dy-
namical models, the state space is structured with different
domains; hence a fixed unit step size can result in scaling
issues.

We use an isometrically scaled version of the full gradient

0 =¢eVn(my(s)) (ARPL) 3)

where 7 is a loss function over the policy 7, which is
parametrized by parameters 6.

Type of Perturbation: A malicious adversary can change
either of the three quantities , v, or m. A change in U can
be equated to dynamics noise, i.e. uncertainty in physical
parameters such as mass, friction, and inertia, while v and
o correspond to direct perturbations of state and observa-
tion. Prior work in (Huang et al.; Behzadan & Munir) only
examines perturbations to the current state in image space,

i.e. v, which is often not physically plausible. We perform
perturbations to process noise v by adding gradient based
perturbation to the state of the system. Similarly, we add
observation noise to ® by changing the observation while
preserving the system state. Adversarial perturbation on
dynamics noise through model parameters u requires state
augmentation § = [s, u]”, and only the latter component of
the gradient is used Vs = [0,V].

We maintain physical plausibility of all perturbations
through the projection of the perturbed state to its respec-
tive domain, i.e. the state space for s and bounded variation
in u € [0.5ug, 1.5u0], where py is nominal (source) dynam-
ics.

Modes of Perturbation: We build two threat modes: Ad-
versarial and Random. For noise in states (V) and obser-
vation (), adversarial states are calculated using 0, while
random perturbations are uniformly sampled from [—§, §].
For dynamics noise, u is set to be a uniform sample in
[0.5u0, 1.51p] at each time iteration. For adversarial dy-
namics noise, we first get a random sample as before, then
add a gradient & evaluated at 4, ~ U(0.51,1.5p).

Frequency of Perturbation: The parameter ¢ € [0, 1] de-
termines the frequency of applying adversarial (or random)
updates. At each time step, an update is applied with prob.
Bern(¢). When ¢ = 0, only the initial time step is per-
turbed in each episode.

The three perturbation types described above combined
with two modes of perturbation and three levels of pertur-
bation frequency result in a total of 18 threat models. Each
model is also compared with the nominal source model
with no changes as a baseline.

3.3. Robust Training with Adversarial Perturbations

Direct Policy Optimization methods utilize batch trajec-
tory sampling for gradient estimates as in (Schulman et al.,
2015). The core of the ARPL operates by modifying the
trajectory rollouts to include trajectory perturbation. In the
most general setting, at each iteration, a trajectory is rolled
out, and an adversarial perturbation is added to the model
with probability ¢ at each time step along the trajectory.
The exact operation to compute the perturbation depends
on the choice of threat model. A gradient update to the pol-
icy parameters is then made after a rolling out a batch of k
trajectories.

ARPL achieves robustness by adding adversarial model
variation in each rollout. However, training on adver-
sarial examples is different from other data augmentation
schemes. In supervised models, the data is augmented with
a priori transformations such as translation and rotation
which are expected to occur in the test set. By contrast, ad-

Adversarially Robust Policy Learning (ARPL)

versarial perturbations rely on the online generation of sce-
narios that not only expose flaws in the ways that the model
conceptualizes its decision function, but also are likely to
occur naturally.

4. Experimental Results

We evaluated our proposed ARPL algorithm on four
continuous control tasks — inverted pendulum,
half-cheetah, hopper, and walker-2d using the
MuJoCo physics simulator (Todorov et al., 2012). These
tasks involve complex non-linear dynamics and direct
torque control on the actuated joints. Under-actuation
and discontinuous contact render these tasks a challenging
benchmark for reinforcement learning methods. To under-
stand our model’s robustness with physical plausibility, we
use a low-dimensional state representation that captures the
joint angles and velocities in these tasks. In such cases,
perturbations on the state vectors naturally lead to a new
state that is physically realizable in the environments. The
objective of the inverted pendulum task is to keep
a pole upright by applying a force (control) to the base
of the pole. The agent keeps accumulating reward while
the pole is upright and fails the task if the pole tilts by too
much. The objective of the half-cheetah, hopper,
and walker-2d tasks is to apply torque control to the
joints in order to move right as fast as possible until the
body falls over.

We use the state-of-the-art trust region policy optimiza-
tion (TRPO) method (Schulman et al., 2015) to learn a
stochastic policy using neural networks. The policy is
parametrized by a Gaussian distribution, where its mean is
predicted by a network that takes a state as input and con-
sists of two hidden layers with 64 units per layer, and tanh
as the non-linearity, and the standard deviation is an ad-
ditional learned parameter that is independent of the state.
For the loss function 1 that ARPLuses to generate adver-
sarial perturbations, we use 1(Ug) = ||Lg||3. Where Lg is
the output of the mean network with parameters 6.

We used a curriculum learning approach to train our agents
on increasing perturbation frequency (¢). All agents were
trained for 2000 iterations - the large number of iterations
was necessary to guarantee convergence for curriculum
learning. We define the curriculum by uniformly increasing
¢ between 0 and ¢,,,,. For process noise perturbations, we
set @pqx = 0.1, and for dynamics noise perturbations we set
Omax = 0.5. We update the curriculum every 200 iterations.
Note that we omitted results on observation noise perturba-
tions due to space constraints. It is likely that observation
noise will become much more important in the context of
real world robot experiments.

Improving Model Robustness using Adversarial Train-

ing:

Here we evaluate the effectiveness of our robust training
method proposed in Sec. 3.3. For every agent type, we
trained 15 agents and selected the agent with the best learn-
ing curve. This is necessary since our method also tends
to produce agents with poor performance due to the high
variance of the training process. This is something we
would like to address in future work. Nominal agents were
trained with vanilla TRPO, random agents were trained
using ARPL with random perturbations, and adversarial
agents were trained using ARPL with adversarial pertur-
bations. These results are for two sets of agents - one that
were trained on process noise and another that were trained
on dynamics noise.

Adversarial Process Noise Characterization
for Inverted Pendulum Agents

.
o
=1
(=]

©
o
o

o
1=
)

N
S
S

N
1=}
o

average performance over 100 rollouts

o
L

0.0 0.‘1 O.‘Z O.‘3 0.‘4 0.‘5
perturbation frequency (¢)
=== nominal agent - baseline
=== random agent - baseline
=== adversarial agent - baseline

—— nominal agent - perturbed
—— random agent - perturbed
—— adversarial agent - perturbed

Figure 2. A comparison of agent performance with respect to ad-
versarial process noise on the Inverted Pendulum task. Here,
€ = 0.01, and we evaluated agent performance as we increased
the perturbation frequency. The baseline performance indicates
how each agent performs in an unperturbed environment. Notice
that the adversarial agent does the best in the region where is was
trained, but the random agent is more resistant in the higher fre-
quency regime.

Fig. 2 and Fig. 3 show the effect of process noise in the
Inverted Pendulum task. As Fig. 2 demonstrates, the nom-
inal agent is highly susceptible to process noise, but both
the random and adversarial agents are more robust. It is
interesting to note that the adversarial agent performs bet-
ter in the region where it was trained, but the random agent
seems to generalize outside of that region. However, Fig. 3
shows that the adversarial agent is incredibly robust to ran-
dom process noise, much more so than the random agent.
This is a very promising result since random process noise
perturbations are much more likely to be encountered in
practice (for example, on a robot, with noise in sensor mea-
surements).

Fig. 4 and Fig. 5 show the effect of dynamics noise in

Adversarially Robust Policy Learning (ARPL)

Random Process Noise Characterization
for Inverted Pendulum Agents

=
1<)
=]
o
1
]
]

800

600

200

average performance over 100 rollouts

0.0 0.1 0.‘2 0.‘3 0.4 0.5
perturbation frequency (¢)

—— nominal agent - perturbed

—— random agent - perturbed

— adversarial agent - perturbed

=== nominal agent - baseline
=== random agent - baseline
=== adversarial agent - baseline

Figure 3. A comparison of agent performance with respect to ran-
dom process noise on the Inverted Pendulum task. Here, € =0.01,
and we evaluated agent performance as we increased the pertur-
bation frequency. The baseline performance indicates how each
agent performs in an unperturbed environment. Notice that the ad-
versarial agent is robust across all perturbation frequencies while
the random agent suffers with higher frequency noise.

Adversarial Dynamics Noise Characterization
for Inverted Pendulum Agents

=
=3
=3
S

800

600 -

200 A

average performance over 100 rollouts

o
L

0.0 0.1 0.‘2 0.‘3 0.4 0.5
perturbation frequency (¢)

—— nominal agent - perturbed

—— random agent - perturbed

—— adversarial agent - perturbed

-== nominal agent - baseline
=== random agent - baseline
=== adversarial agent - baseline

Figure 4. A comparison of agent performance with respect to ad-
versarial dynamics noise in the Inverted Pendulum task. Here,
€ = 10.0, and we evaluated agent performance as we increased
the perturbation frequency. The baseline performance indicates
how each agent performs in an unperturbed environment. Notice
that the adversarial agent is robust across all perturbation frequen-
cies.

the Inverted Pendulum task. We see that the adversarial
agent is robust across both adversarial and random dynam-
ics perturbations across all perturbation frequencies, while
the random agent is significantly more robust than the nom-
inal agent.

Fig. 6 and Fig. 7 show the effect of dynamics noise in the
Walker task. We see that the adversarial and random agents

Random Dynamics Noise Characterization
for Inverted Pendulum Agents

=
1<)
=]
o

800

600

200

average performance over 100 rollouts

o
s

0.0 0.1 0.2 0.3 0.4 0.5
perturbation frequency (¢)

=== nominal agent - baseline —— nominal agent - perturbed
=== random agent - baseline —— random agent - perturbed
=== adversarial agent - baseline = —— adversarial agent - perturbed

Figure 5. A comparison of agent performance with respect to
random dynamics noise in the Inverted Pendulum task. Here,
€ = 10.0, and we evaluated agent performance as we increased
the perturbation frequency. The baseline performance indicates
how each agent performs in an unperturbed environment. Notice
that the adversarial agent is robust across all perturbation frequen-
cies.

Adversarial Dynamics Noise Characterization
for Walker Agents

4500

4000 -

average performance over 100 rollouts
- = N N w w
o w
g 2 8 8 & 3
o o o o [S] o
PR P L |

%
=3
=)

0.0 0.1 0.2 0.3 0.4 0.5
perturbation frequency (¢)

=== nominal agent - baseline —— nominal agent - perturbed
=== random agent - baseline —— random agent - perturbed
-=-= adversarial agent - baseline = —— adversarial agent - perturbed

Figure 6. A comparison of agent performance with respect to ad-
versarial dynamics noise in the Walker task. Here, € = 10.0, and
we evaluated agent performance as we increased the perturbation
frequency. The baseline performance indicates how each agent
performs in an unperturbed environment. Notice that the adver-
sarial and random agents are robust across all perturbation fre-
quencies.

are robust across both adversarial and random dynamics
perturbations across all perturbation frequencies.

Fig. 8, Fig. 9, Fig. 10, and Fig. 11 show the agents’ perfor-
mance under different combinations of dynamics configu-
rations. The center of the grid corresponds to the original
values of the dynamics parameters. We can see that nom-
inal performance tends to suffer farther from the center of

Adversarially Robust Policy Learning (ARPL)

Random Dynamics Noise Characterization
for Walker Agents

4500

4000

3500 4

3000 4

2500 1

2000 4

1500

average performance over 100 rollouts

1000

0.0 0.1 0.2 0.3 0.4 0.5
perturbation frequency (¢)

=== nominal agent - baseline —— nominal agent - perturbed
=== random agent - baseline —— random agent - perturbed
-=-= adversarial agent - baseline = —— adversarial agent - perturbed

Figure 7. A comparison of agent performance with respect to ran-
dom dynamics noise in the Walker task. Here, € = 10.0, and we
evaluated agent performance as we increased the perturbation fre-
quency. The baseline performance indicates how each agent per-
forms in an unperturbed environment. Notice that the adversarial
and random agents are robust across all perturbation frequencies.

the grid, as expected, while both random and adversarial
agents are robust to the changed mass and friction values.
In general, the adversarial agents tend to obtain higher re-
ward, but the random agents are still much more robust than
the nominal agents. It is not clear whether the use of ad-
versarial training with respect to dynamics noise results in
substantial benefits. Additional investigation is necessary.

5. Conclusion

We motivated and presented ARPL, an algorithm for us-
ing adversarial example during the training of RL agents to
make them more robust to changes in the environment. We
trained and evaluated policies on 4 continuous control Mu-
JoCo tasks, and showed that agents trained using vanilla
TRPO are vulnerable to changes in the environment state
and dynamics. We demonstrated that using ARPL with
both random and adversarial dynamics noise leads to poli-
cies that are robust with respect to the environment dynam-
ics. We also demonstrated that using ARPL to train with
random and adversarial process noise leads to agents that
are robust to noise in the environment state.

There are several aspects of this work that we will investi-
gate in the future. First, we want to investigate the use of
perturbations with respect to different loss functions over
the policy network. This could include using modified pol-
icy gradients with respect to the states and using numerical
gradients to estimate the reward gradient with respect to
the state. We also want to investigate the effect of observa-
tion noise further, as well as different forms of random pro-
cess noise. We want to look into ways to compute dynam-

ics noise perturbations without state augmentation, since
this information is not typically available in the real world.
This might also lead to more differentiation between ran-
dom and adversarial dynamics noise agents. Additionally,
the agents trained by ARPL demonstrated incredibly high
variance in performance (hence why we compared results
across the best agents). We want to investigate methods of
variance reduction. We would also like to develop a theo-
retically sound justification for ARPL. Finally, we want to
test an ARPL policy on a robot and investigate the robust-
ness of the policy.

6. Team Member Contribution and
Acknowledgments

I originally started this work while working with my men-
tors Yuke Zhu and Animesh Garg, but this quarter, I contin-
ued to work independently on this project. Their guidance
and feedback was critical for the completion of this work,
and I look forward to their continued help and support. I
would also like to thank my advisors Silvio and Fei-Fei.

References

Abbeel, Pieter, Quigley, Morgan, and Ng, Andrew Y. Us-
ing inaccurate models in reinforcement learning. In Pro-
ceedings of the 23rd international conference on Ma-
chine learning, pp. 1-8. ACM, 2006.

Barreno, Marco, Nelson, Blaine, Sears, Russell, Joseph,
Anthony D, and Tygar, J] Doug. Can machine learning
be secure? In Proceedings of the 2006 ACM Symposium
on Information, computer and communications security,

pp. 16-25. ACM, 2006.

Behzadan, Vahid and Munir, Arslan. Vulnerability of deep
reinforcement learning to policy induction attacks.

Biggio, Battista, Corona, Igino, Maiorca, Davide, Nelson,
Blaine, §rndic’, Nedim, Laskov, Pavel, Giacinto, Giorgio,
and Roli, Fabio. Evasion attacks against machine learn-
ing at test time. In Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases,
pp. 387-402. Springer, 2013.

Devin, Coline, Gupta, Abhishek, Darrell, Trevor, Abbeel,
Pieter, and Levine, Sergey. Learning modular neural
network policies for multi-task and multi-robot transfer.
arXiv preprint arXiv:1609.07088, 2016.

Gao, Ji, Wang, Beilun, and Qi, Yanjun. Deepmask: Mask-
ing dnn models for robustness against adversarial sam-
ples.

Garcia, Javier and Fernandez, Fernando. A comprehensive
survey on safe reinforcement learning. Journal of Ma-
chine Learning Research, 16(1):1437-1480, 2015.

Adversarially Robust Policy Learning (ARPL)

InvertedPendulum (Nominal

Mass of Pole
B0% B0% 70% BO% SO%I00%1I0NI20%TA0NT40NISIN

Inverted Pendulum

Mass of Pole
B0% B0% 70% BO% GO%I00%110NT20% 130N 140%180%

S0% 60% 70% B0% 90% 100%110%120%130%140%150%
Mass of Cart

SO% BO% T0% B0% 00% 100%110%120%130%140%150%
Mass of Cart

InvertedPendulum (Random)

InvertedPendulum (Adversarial)

1000
| 800
600

400

Imn
0

Mass of Pole
B0% B0% 70% BO% GOAI00%1I0MT20% 10N T40NTS0N

0% 60% 70% B0% 90% 100%110%120%130%140%150%
Mass of Cart

Figure 8. Policy robustness of the inverted pendulum agents with respect to varying dynamics configurations.

HalfCheetah (Nominal)

1 ||

[[[[[] | [
| | N

Friction

S0% 60% TO% 0% DO 100%1 10%120%130%1405 1

Half Cheetah

50% GO% 70% B0% 5O% 100%110%120%130%140%150%
Torso Mass

HalfCheetah (Random)

HalfCheetah (Advers:

1000

§
§
£
:
g
§
§
.
§

50% B0% 70% BO% 90% 100%110%120%130%140%150%
Torso Mass

Torso Mass

Figure 9. Policy robustness of the half cheetah agents with respect to varying dynamics configurations.

Hopper (Nominal)

Friction
50% B0% 70% B0% SO%100%110%120%130%140%160%

£
z
&

B0% B0% 70% B0% SO%100%110%120%130%140%160%

SO% B0% T0% 80% 90% 100%110%120%130%140%150%
Torso Mass

S0% B0% T0% B0% 90% 100%110%120%130% 140%150%
Torso Mass

Hopper (Random)

Hopper (Adversarial)

Friction
50% B0% 70% B0% S0%100%110%120%130%140%160%

S0% B0% T0% 80% 90% 100%110%120%130% 140%150%
Torso Mass

Figure 10. Policy robustness of the hopper agents with respect to varying dynamics configurations.

Walker2d (Nominal)

Friction

B0% 0% T0% B0% SOMI00%110MIZ0M 10N 140N 150%
Friction

HO% 0% 0% BD% SOMI00%110MIZ0% 1% 140N 150%

0% 60% 70% 80% 90% 100%110%120%130%140%150%
Torso Mass

S0% 60% 70% 80% 90% 100%110%120%130%140%150%
Torso Mass

Walker2d (Random) Walker2d (Adversarial)

Friction

0% 60% 70% 80% 90% 100%110%120%1305%140%150%
Torso Mass

Figure 11. Policy robustness of the walker agents with respect to varying dynamics configurations.

Goodfellow, Ian J., Shlens, Jonathon, and Szegedy, Chris-
tian. Explaining and harnessing adversarial examples.

Green, Michael and Limebeer, David JN. Linear robust
control. Courier Corporation, 2012.

Grosse, Kathrin, Manoharan, Praveen, Papernot, Nicolas,

Backes, Michael, and McDaniel, Patrick. On the (statis-
tical) detection of adversarial examples.

Huang, Sandy, Papernot, Nicolas, Goodfellow, Ian, Duan,
Yan, and Abbeel, Pieter. Adversarial attacks on neural
network policies.

Adversarially Robust Policy Learning (ARPL)

Kober, Jens, Bagnell,] Andrew, and Peters, Jan. Reinforce-
ment learning in robotics: A survey. The International
Journal of Robotics Research, pp. 0278364913495721,
2013.

Kurakin, Alexey, Goodfellow, Ian, and Bengio, Samy. Ad-
versarial examples in the physical world.

Levine, Sergey, Finn, Chelsea, Darrell, Trevor, and Abbeel,
Pieter. End-to-end Training of Deep Visuomotor Poli-
cies. Journal of Machine Learning Research, 17(39):
1-40, 2016a.

Levine, Sergey, Pastor, Peter, Krizhevsky, Alex, and
Quillen, Deirdre. Learning hand-eye coordination for
robotic grasping with deep learning and large-scale data
collection. arXiv preprint arXiv:1603.02199, 2016b.

Lillicrap, Timothy P, Hunt, Jonathan J, Pritzel, Alexander,
Heess, Nicolas, Erez, Tom, Tassa, Yuval, Silver, David,
and Wierstra, Daan. Continuous control with deep re-
inforcement learning. arXiv preprint arXiv:1509.02971,
2015.

Mastin, Andrew and Jaillet, Patrick. Loss bounds for un-
certain transition probabilities in markov decision pro-
cesses. In Decision and Control (CDC), 2012 IEEE 515t
Annual Conference on, pp. 6708-6715. IEEE, 2012.

Mnih, Volodymyr, Badia, Adri Puigdomnech, Mirza,
Mehdi, Graves, Alex, Lillicrap, Timothy P., Harley, Tim,
Silver, David, and Kavukcuoglu, Koray. Asynchronous
methods for deep reinforcement learning.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David,
Rusu, Andrei A, Veness, Joel, Bellemare, Marc G,
Graves, Alex, Riedmiller, Martin, Fidjeland, Andreas K,
Ostrovski, Georg, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529—
533, 2015.

Moosavi-Dezfooli, Seyed-Mohsen, Fawzi, Alhussein,
Fawzi, Omar, and Frossard, Pascal. Universal adversar-
ial perturbations.

Moosavi-Dezfooli, Seyed-Mohsen, Fawzi, Alhussein, and
Frossard, Pascal. Deepfool: a simple and accurate
method to fool deep neural networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

Nilim, Arnab and El Ghaoui, Laurent. Robust control of
markov decision processes with uncertain transition ma-
trices. Operations Research, 53(5):780-798, 2005.

Papernot, Nicolas, McDaniel, Patrick, Goodfellow, lan,
Jha, Somesh, Celik, Z. Berkay, and Swami, Ananthram.
Practical Black-Box Attacks against Deep Learning Sys-
tems using Adversarial Examples.

Rajeswaran, Aravind, Ghotra, Sarvjeet, Ravindran, Balara-
man, and Levine, Sergey. Epopt: Learning robust neural
network policies using model ensembles.

Rusu, Andrei A, Rabinowitz, Neil C, Desjardins, Guil-
laume, Soyer, Hubert, Kirkpatrick, James, Kavukcuoglu,
Koray, Pascanu, Razvan, and Hadsell, Raia. Progres-

sive neural networks. arXiv preprint arXiv:1606.04671,
2016a.

Rusu, Andrei A, Vecerik, Matej, Rothorl, Thomas, Heess,
Nicolas, Pascanu, Razvan, and Hadsell, Raia. Sim-to-
real robot learning from pixels with progressive nets.
arXiv preprint arXiv:1610.04286, 2016b.

Schulman, John, Levine, Sergey, Moritz, Philipp, Jordan,
Michael, and Abbeel, Pieter. Trust region policy opti-
mization. /ICML, 2015.

Silver, David, Huang, Aja, Maddison, Chris J, Guez,
Arthur, Sifre, Laurent, Van Den Driessche, George,
Schrittwieser, Julian, Antonoglou, Ioannis, Panneershel-
vam, Veda, Lanctot, Marc, et al. Mastering the game of
go with deep neural networks and tree search. Nature,
529(7587):484-489, 2016.

Szegedy, Christian, Zaremba, Wojciech, Sutskever, Ilya,
Bruna, Joan, Erhan, Dumitru, Goodfellow, Ian, and Fer-
gus, Rob. Intriguing properties of neural networks.

Taylor, Matthew E. and Stone, Peter. Transfer learning for
reinforcement learning domains: A survey. Journal of
Machine Learning Research, 10:1633-1685, 2009.

Todorov, Emanuel, Erez, Tom, and Tassa, Yuval. Mujoco:
A physics engine for model-based control. In Intelli-
gent Robots and Systems (IROS), 2012 IEEE/RSJ Inter-
national Conference on, pp. 5026-5033. IEEE, 2012.

Yu, Wenhao, Liu, C. Karen, and Turk, Greg. Preparing for
the unknown: Learning a universal policy with online
system identification.

Zhu, Yuke, Mottaghi, Roozbeh, Kolve, Eric, Lim, Joseph J,
Gupta, Abhinav, Fei-Fei, Li, and Farhadi, Ali. Target-
driven visual navigation in indoor scenes using deep re-

inforcement learning. arXiv preprint arXiv:1609.05143,
2016.

http://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Moosavi-Dezfooli_DeepFool_A_Simple_CVPR_2016_paper.html
http://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Moosavi-Dezfooli_DeepFool_A_Simple_CVPR_2016_paper.html
http://arxiv.org/pdf/1602.02697
http://arxiv.org/pdf/1602.02697

Adversarially Robust Policy Learning through

Active Construction of Physically-Plausible Perturbations

Ajay Mandlekar, Yuke Zhu, Animesh Garg, Li Fei-Fei, Silvio Savarese
Department of Computer Science, Stanford University

Experimental Setup

Process Noise - We perturb the original environment state and explicitly set this as the
environment state in the simulator. We also feed this perturbed state to the agent as an
observation.

Introduction

 As we move towards deploying learned controllers
on physical systems around us, robust
performance is not only a desired property but also
a design requirement to ensure the safety of both
users and the system itself.

ARPL Algorithm

ARPL is a basic augmentation for any policy gradient
method. Every iteration consists of policy evaluation and
improvement.

During policy evaluation, we collect N trajectories via
policy rollouts. For every observation during a rollout, we
adversarially perturb the state with probability ¢ and
maghnitude € using the following perturbation

0=¢ Vsn(nG (S))

Whgre n is the L2 norm of the control produced by the We experimented with the perturbation type (process, dynamics, observation), the
policy . perturbation frequency, controlled by ¢, the probability of a perturbation at every time
step, and whether the perturbation is generated randomly or adversarially.

Dynamics Noise - We augment the agent’s observation with environment dynamics
parameters during training and use this part of the observation vector to compute
perturbations for these parameters. They are then updated in the environment.

* We demonstrate that Deep RL methods are
susceptible to adversarial perturbations in states,
model parameters, and observations.

Observation Noise - [dentical to process noise, but the agent receives the unperturbed
state as the observation.

* We introduce Adversarially Robust Policy Learning
(ARPL) - an algorithm that leverages active
computation of physically-plausible adversarial
examples during training in order to enable robust
performance under both random and adversarial
perturbations of the system.

Then, we run policy improvement, as prescribed by the

policy gradient method. Our implementation uses TRPO. We evaluate ARPL on 4 continuous control tasks using MudoCo and Gym.

Demonstrated Robustnhess In
Physical Dynamics Parameters

InvertedPendulum (Nominal) InvertedPendulum (Random) InvertedPendulum (Adversarial)

process ' Illlllll- IIIIIIII_ I EEEEE
noise L4 ¢ :] [[[[[[[[[7T]
I [L[] i

observation ' Z ,/ / %
noise {LL44 4 4

bust e
f:g::t (d 4L é4+ -41 4 /»Jz/ﬂ

ARPL Agent Examples

Adversarial Process Noise Characterization
for Inverted Pendulum Agents

Random Process Noise Characterization
for Inverted Pendulum Agents

nominal | ’ [Jll
» & & —,’\<4—‘ Lé.«

dynamics
noise

100 rollout:
100 rollouts
=]
o
o

ge perform
average performance over
8
o

N
=]
o

0.0 01 02 03
pert urbation frequency (¢)
nomin.

== nominal agent - bas
andom g nt - bas l
-—— adver ial agent - bas Ine

Random Dynamics Noise Characterization
for Inverted Pendulum Agents

Adversarial Dynamics Noise Characterization
for Inverted Pendulum Agents

@ s @
5] o= 5]
o ad o
N - N
[=] og [«]
w w2 w
w w2 W
5 a3z L
= =3 =

&

- l m,u!(,m v . P maol(.,m v § I lbbU’Clll v

Inverted Pendulum

er 100 rollouts

HalfCheetah (Nominal) HalfCheetah (Random) HalfCheetah (Adversarial)

Physically-Plausible
Threat Model

Dynamics Process
Noise Noise

|
Xt+1 :f(xtaut;m +V

2t :g(x,) +?|

Observation
Noise

Dynamics

Observation

Key ldea: Can we use Adversarial Perturbations?

.:' _l
s NS
Half Cheetah IIIIIIIIIII :
q L

b
TO% 80% S0% 100%110%12051 140% 50% EO% TO% 80% S0% 100%1 10%120%130%140%1 50%

Torso Mass Torso Mass

Hopper (Nominal) Hopper (Random)

Friction
Friction
0% 90%100%110%120%1 30%6140%180%

% 60 70% 80% 90% 100%110%120%1

Torso Mass ' - Torso Mass

Walker2d (Nominal) Walker2d (Random)

Walker2D

]
0% G0 T0% 80% 90%10

B0% 90% 100% 1 305514055 1509% S0)5%61205%130%
Torso Mass Tuvso M us

J0A5140551509%

Friction
QN100%1 10%120%1 30461 404180%

IR
.

4000

IIIIIIIIIII -

o B0% 70% BO% 90% 100%110%120%1 30%140%15
TorqoMaqq

Hopper (Adversarial)

" s0R% B0% T0% 80% 90% 100%110%:1 20561 30514095 150%

50% 60% 70% B0% SO%ST100557 10951 209512006 140061 807%

Torso Mass

Walker2d (Adversarial)

0% 6% T0% 80% 90% 100%1 10512051 305514055 150%
Torso Mass

average performance ov

0.‘0 0;1 0‘2 0;3
perturbation frequency (¢)
== nominal agen i
ndom agen

Adversarial Dynamics Noise Characterization Random Dynamics Noise Characterization
for Walker Agents for Walker Agents

References

S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel, “Adversarial attacks on neural network policies”, Feb. 8, 2017. arXiv:
1702.02284v1 [cs.LG]

J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel, “Trust region policy optimization”, ICML, 2015

C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Erhan, 1. Goodfellow, and R. Fergus, “Intriguing properties of neural networks”, Dec. 21,
2013. arXiv: 1312.6199v4 [cs.CV]

E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based control”, in Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on, IEEE, 2012, pp. 5026-5033

