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Experimental Setup

Process Noise - We perturb the original environment state and explicitly set this as the
environment state in the simulator. We also feed this perturbed state to the agent as an
observation.

Introduction

 As we move towards deploying learned controllers
on physical systems around us, robust
performance is not only a desired property but also
a design requirement to ensure the safety of both
users and the system itself.

ARPL Algorithm

ARPL is a basic augmentation for any policy gradient
method. Every iteration consists of policy evaluation and
improvement.

During policy evaluation, we collect N trajectories via
policy rollouts. For every observation during a rollout, we
adversarially perturb the state with probability ¢ and
maghnitude € using the following perturbation
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Whgre n is the L2 norm of the control produced by the We experimented with the perturbation type (process, dynamics, observation), the
policy . perturbation frequency, controlled by ¢, the probability of a perturbation at every time
step, and whether the perturbation is generated randomly or adversarially.

Dynamics Noise - We augment the agent’s observation with environment dynamics
parameters during training and use this part of the observation vector to compute
perturbations for these parameters. They are then updated in the environment.

* We demonstrate that Deep RL methods are
susceptible to adversarial perturbations in states,
model parameters, and observations.

Observation Noise - [dentical to process noise, but the agent receives the unperturbed
state as the observation.

* We introduce Adversarially Robust Policy Learning
(ARPL) - an algorithm that leverages active
computation of physically-plausible adversarial
examples during training in order to enable robust
performance under both random and adversarial
perturbations of the system.

Then, we run policy improvement, as prescribed by the

policy gradient method. Our implementation uses TRPO. We evaluate ARPL on 4 continuous control tasks using MudoCo and Gym.
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ARPL Agent Examples

Adversarial Process Noise Characterization
for Inverted Pendulum Agents

Random Process Noise Characterization
for Inverted Pendulum Agents
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Random Dynamics Noise Characterization
for Inverted Pendulum Agents

Adversarial Dynamics Noise Characterization
for Inverted Pendulum Agents

@ s @
5] o= 5]
o ad o
N - N
[=] og [«]
w w2 w
w w2 W
5 a3z L
= =3 =

&

- l m,u!(,m v . P maol(.,m v § I lbbU’Clll v

Inverted Pendulum
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Key ldea: Can we use Adversarial Perturbations?
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