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Introduction

Problem

The Multi-Armed Bandit (MAB) model is used to analyze the exploration/exploitation
trade-off inherent in sequential decision problems and reinforcement learning. The mo-
tivating example for studying MABs comes from clinical trials where we have N treat-
ments and would like to learn the efficacy of each treatment. Given that patients arrive
sequentially, we decide whether to try new or poorly understood treatments (exploring)
or stick with the current best treatment (exploiting). Inherently, we would like to learn
about all of the treatments with as little exploration as possible in order to minimize
the cumulative regret over our entire sequence of decisions.

Motivation

In our problem setting, we are concerned with learning bandit policies in causal envi-
ronments. Our motivation for learning in causal environments stems from a wide range
of decision making settings in Healthcare, Education, and Advertising where actions
have inherent causal dependencies. This type of problem is best explained by an ex-
ample. Consider a healthcare example where a physician would like to understand how
to best influence the health of a patient by minimizing their likelihood of contracting
gum disease. The physician can recommend that the patient either floss daily, avoid
sugary foods, or use mouthwash. It is reasonable to believe that these actions have
causal dependencies of two forms. First, if the physician makes too many suggestions
concurrently the patient may be overwhelmed and not follow the suggestions. Secondly,
it is possible that if the patient is recommended one of the possible actions, conditioned
on the patient’s new habits, she may inadvertently follow one of the other recommenda-
tions without being prompted by the physician to do so. In this type of decision-making
environment, there is a clear incentive to learn the causal dependencies between actions
and use these learned dependencies to make high value interventions. The difficulty
of this problem is that we now must learn both the structure of our causal graphical
model as well as perform the online estimation of action values that is standard in ban-
dit problems. This interplay is well studied in the algorithm we propose which makes
the assumption that these two effects can be independently factorized.

Causal Graphical Model

In our causal model, following the terminology of [Koller, 2009] we have a directed
acyclic graph G, a set of variables X = {X1,Xs,..., Xy}, and a joint distribution P
over X that factorizes over G. Each variable is Bernoulli and the existence of an edge
from variable X; to X; conditions the probability distribution of X; i.e. P(X; = z;|X; =
z;) # P(X; = z;). We denote the parents of a variable X, or the subset of X such that
there exists an edge from X; to X, to be Pax,. An intervention (of size m) is repre-
sented as do(X = z) which sets the values of z = {1, 22, ...,z } to the corresponding
variables in X. When an intervention is performed on node Xj, all edges between X;
and Pay, are mutilated and the graph G can be represented by an altered probability
distribution P (X¢|do(X = z)) where X° =X — X.

Our agent is given a set of allowed actions A and limited knowledge of the graph
G. One of the variables, Y € X, in our graph G is the reward variable and is Bernoulli.
The expected reward for an action a € A can be represented as pq = E[Y |do(X = a)]
and the expected reward for the optimal action pio- = maxgea E[Y|do(X = a)]. After
choosing an action a, the agent observes realized values of observable variables in X,
X, and a reward Y;. Using these realizations, the agent updates his best estimates of
expected rewards for each a € A and repeats this procedure for T' episodes. We define
cumulative regret after T episodes as being R(T) = g T — Y%, Ha; where aj represents
the estimate of the optimal action at time ¢.
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In the chain causal graph setting, ¥ depends

only on a single variable X3. Y; ~ Bernaulli(%+

€) if X3 =1and Y; ~ Bern(}) if X; =0. We
have an expected reward of 5 + € for do(X3 =
1), (1= Pu)(§+€)+Pu(3) for do(X1 = 1), and
Pu(3 +€¢) + (1 — P)(3) for all other actions.
We set ¢; = 0 for i < m,i ¢ {2,3}; ¢; = P,
for i € {2,3}; and } otherwise. For our sim-
ulations shown below, N = 50, m(q) = 30,
P, = 0.1 and € = 0.3. Note that the graph
on the left depicts simple regret vs. horizon
T while the graph on the right depicts cumu-
lative regret vs. horizon 7'
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In the confounded causal graph setting, Y de-
pends only on two variables X; and X5. Our
best possible action is the intervention do(X; =
1). Wesetg; =0fori <m,i¢{2,3};¢;=P,
for i € {2,3}; and } otherwise. We compare
two versions of OC-TS: (1) where each ac-
tion is played once for first |.A| timesteps and
(2) where is each action is drawn from n* =

argmin, ¢ 4 maxac A E[%} For
our simulations shown below, N = 50, m(g) =
30, P, = 0.3 and € = 0.3. Note that the graph
on the left depicts simple regret vs. horizon
T while the graph on the right depicts cumu-
lative regret vs. horizon T'.
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‘We propose an online algorithm for the setting of causal bandits with general causal graphs. Online
Causal Thompson Sampling (OC-TS), uses the observation that p, = E[Y|do(X = a)] can be
decomposed by partitioning over Pay € X. For Pay = {X1, X», ..., X} where each element in the
set is a Bernoulli Random Variable, our partition over the sample space is Z = {Z1, Zs,..., Zyn }.

oN
ta = E[Y|do(X = a)] = Y P (Y = 1|Pay = Z) P (Pay = Z|do(X = a))
k=1

Using this observation, we can use Thompson Sampling to learn P(Y = 1|Pay = Z) and

P (Pay = Zg|do(X = a)). We provide two variants of the algorithm with varying degrees of knowl-
edge of the causal graph G. In the first setting, we know only {Pay}, the subset of X such that
there exists an edge from each element of {Pay} to Y. In the second setting, we assume knowledge
of P(Pay = Zg|do(X = a)), the probability distributions of { Pay} conditioned on performing the
intervention do(X = a).

Algorithm 1 Online Causal Thompson Sampling - Known {Pay} Setting

1: Initialize: Betagzk =(1,1), Dirichletga =1, S%k,ng =0
2: for timestep t = 1,2,...,7T do

3: for action a = 1,2,...,|A4| do

4 P(Pay = Zy|do(X = a)) ~ Dirichlet} ' [k]

5: P(Y =1|Pay = Z;) ~ Betaﬁfzt [0]

~

o pa, = SR P(Y = 1|Pay = Zi) P (Pay = Zg|do(X = a))
7 end for

& aj = argmax, i,

o {X}~P(Xldo(X = 7))
10:

Zi={X =ai) U{X?)
11: Y; ~ Bern(P (Y = 1|Pay = Z))
12: Dirichlet,,. [k] += 1

i

13: if Y; =1 then

14 St =S5t +1

15: else

16: Ff =Fl+1

17: end if

18: Betaﬁzk = (StZk + l,F%k +1)
19: end for

Discussion & Future Work

Through our experiments, we have observed the benefits of online learning in the Causal
Bandit setting. By using an algorithm that adapts its arm sampling policy after observing
rewards, we can perform directed exploration to evaluate potentially high value interven-
tions and achieve smaller cumulative regret. In comparison to [Lattimore, 2016] which uses
an offline importance sampling based estimator, we have shown empirically that an online
model based estimator more efficiently learns causal reward structures in a wide range of
environments.

In terms of future work, we would like to better understand limitations of our algorithm
and provide theoretical guarantees on regret. In particular, one limitation we notice is in
the initial exploration phase of our algorithm. When the gap between the optimal action
and the next best action, y} — maX,c 4,aa* Ha, is small we notice that our algorithm’s per-
formance is sensitive to initial exploration strategies. We believe this is a byproduct of both
the cardinality of the action space being large as well as the sparsity of the causal graph.



