CS234: Reinforcement Learning — Problem Session #1

Spring 2023-2024

Problem 1

Suppose we have an infinite-horizon, discounted MDP M = (S, A, R, T,~) with a finite state-action space,
|SxA| < oo and 0 < v < 1. For any two arbitrary sets X and Y, we denote the class of all functions mapping
from X to Y as {X = Y} £ {f | f: X — Y}. In the questions that follow, let Q,Q’ € {S x A — R} be any
two arbitrary action-value functions and consider any fixed state s € S. Without loss of generality, you may
assume that Q(s,a) > Q'(s,a), V(s,a) € S x A.

1. P that — ! N < - Q' .
rove that | max Q(s, a) — max Q'(s, a')| < max |Q(s, a) — Q'(s, a)|

2. P that i — mi ! N < - Q' .
rove tha |£%IEQ(S,CL) (31612(2 (s,a’)| < IglgidQ(s,a) Q' (s,a)

3. Prove that \%I > Q(s,a) — \7¥| 3 Q'(s,d)| <max|Q(s,a) — Q'(s,a)l.
acA a’€A acA



4. Prove that, for any parameter w € R,!

1 1 1 1 / ' /
Lo <A| 3 exp (o Q(s,a») ~Log (W > e Qs ))) < Q) - Qs
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Hint: define and introduce A(a) = Q(s,a) — Q’(s,a) for a € A.

IFor any = € R, exp(z) = e and all logarithms are base e.



The remainder of this question focuses on Algorithm 1, which takes as input an operator
Q) {Sx A= R} = {S =R}
that adheres to the following property?:
1QRQ- QR Qe < 1@ - Qlle;  VQ,Q" €{S x A= R}. (1)

Algorithm 1:
Data: Finite MDP M, Operator ) satisfying Equation 1
Initialize V5(s) = 0,Vs € S > Initial value function estimate
Initialize k =1 > Iteration counter
while not converged do
for each state s € S do

i) = @ (Risa) +7 T 76 | s.alia(s) ).
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end
k=k+1
end
Return V;,

5. For any value function V' € {S§ — R}, define the operator B : {S — R} — {S — R} as follows:

BV(s) = Q) (R(Sva) +y Y T S#)WS’)) ;

acA s'eS

where Q) satisfies Equation 1. Prove that B is a y-contraction with respect to the L.,-norm.

2As always, || - ||co denotes the Loo-norm.



6. Let @, : {S x A — R} = {S — R} be two operators satisfying Equation 1. Prove that, for any

0<a<l,
QR =2Q+1-MHQ
A 1

2

also satisfies Equation 1.

7. For any 0 < & < 1, define your own operator ) : {S x A — R} — {S — R} and prove that running
g
Algorithm 1 with your ) returns the value function associated with the e-greedy optimal policy (where

€
the optimal policy maximizes the expected sum of future discounted rewards).



