
CS234: Reinforcement Learning – Problem Session #1

Spring 2023-2024

Problem 1

Suppose we have an infinite-horizon, discounted MDP M = ⟨S,A,R, T , γ⟩ with a finite state-action space,
|S×A| < ∞ and 0 ≤ γ < 1. For any two arbitrary sets X and Y, we denote the class of all functions mapping
from X to Y as {X → Y} ≜ {f | f : X → Y}. In the questions that follow, let Q,Q′ ∈ {S ×A → R} be any
two arbitrary action-value functions and consider any fixed state s ∈ S. Without loss of generality, you may
assume that Q(s, a) ≥ Q′(s, a), ∀(s, a) ∈ S ×A.

1. Prove that |max
a∈A

Q(s, a)−max
a′∈A

Q′(s, a′)| ≤ max
a∈A

|Q(s, a)−Q′(s, a)|.

2. Prove that |min
a∈A

Q(s, a)− min
a′∈A

Q′(s, a′)| ≤ max
a∈A

|Q(s, a)−Q′(s, a)|.

3. Prove that
∣∣∣ 1
|A|

∑
a∈A

Q(s, a)− 1
|A|

∑
a′∈A

Q′(s, a′)
∣∣∣ ≤ max

a∈A
|Q(s, a)−Q′(s, a)|.
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4. Prove that, for any parameter ω ∈ R,1∣∣∣∣ 1ω log

(
1

|A|
∑
a∈A

exp (ω ·Q(s, a))

)
− 1

ω
log

(
1

|A|
∑
a′∈A

exp (ω ·Q′(s, a′))

)∣∣∣∣ ≤ max
a∈A

|Q(s, a)−Q′(s, a)|.

Hint: define and introduce ∆(a) = Q(s, a)−Q′(s, a) for a ∈ A.

1For any x ∈ R, exp(x) = ex and all logarithms are base e.
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The remainder of this question focuses on Algorithm 1, which takes as input an operator⊗
: {S × A → R} → {S → R}

that adheres to the following property2:

||
⊗

Q−
⊗

Q′||∞ ≤ ||Q−Q′||∞, ∀Q,Q′ ∈ {S ×A → R}. (1)

Algorithm 1:

Data: Finite MDP M, Operator
⊗

satisfying Equation 1
Initialize V0(s) = 0,∀s ∈ S ▷ Initial value function estimate
Initialize k = 1 ▷ Iteration counter
while not converged do

for each state s ∈ S do

Vk(s) =
⊗
a∈A

(
R(s, a) + γ

∑
s′∈S

T (s′ | s, a)Vk−1(s
′)

)
.

end
k = k + 1

end
Return Vk

5. For any value function V ∈ {S → R}, define the operator B : {S → R} → {S → R} as follows:

BV (s) =
⊗
a∈A

(
R(s, a) + γ

∑
s′∈S

T (s′ | s, a)V (s′)

)
,

where
⊗

satisfies Equation 1. Prove that B is a γ-contraction with respect to the L∞-norm.

2As always, || · ||∞ denotes the L∞-norm.
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6. Let
⊗
1
,
⊗
2

: {S × A → R} → {S → R} be two operators satisfying Equation 1. Prove that, for any

0 ≤ λ ≤ 1, ⊗
λ

= λ
⊗
1

+(1− λ)
⊗
2

also satisfies Equation 1.

7. For any 0 ≤ ε ≤ 1, define your own operator
⊗
ε

: {S × A → R} → {S → R} and prove that running

Algorithm 1 with your
⊗
ε

returns the value function associated with the ε-greedy optimal policy (where

the optimal policy maximizes the expected sum of future discounted rewards).
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