Problem 1

For this problem, we will work with a reward function operating on transitions, \(R : S \times A \times S \rightarrow \mathbb{R} \). We are given an infinite-horizon, discounted MDP \(M = \langle S, A, R, T, \gamma \rangle \) but we will actually solve a MDP \(M' \) with an augmented reward function \(M' = \langle S, A, R', T, \gamma \rangle \) where \(R'(s, a, s') = R(s, a, s') + F(s, a, s') \). To provide some motivation, think of a scenario where \(R \) produces values of 0 for most transitions; a bonus reward function \(F : S \times A \times S \rightarrow \mathbb{R} \) that produces non-zero values could provide us more immediate feedback and help accelerate the learning speed of our agent. In this problem, we will focus on a particular type of reward bonus \(F(s, a, s') = \gamma \phi(s') - \phi(s) \), for some arbitrary function \(\phi : S \rightarrow \mathbb{R} \) and \(\forall (s, a, s') \in S \times A \times S \).

1. Let \(Q^*_M, Q^*_M' \) denote the optimal action-value functions of MDPs \(M \) and \(M' \), respectively. Using the Bellman equation, prove that \(Q^*_M(s, a) - \phi(s) = Q^*_M'(s, a) \) and then use this fact to conclude that \(\pi^*_M(s) = \pi^*_M(s), \forall s \in S \).
2. Consider running Q-learning in each MDP \mathcal{M} and \mathcal{M}' which requires, for each MDP, initial values $Q^0_{\mathcal{M}}(s,a)$ and $Q^0_{\mathcal{M}'}(s,a)$. Let $q_{\text{init}} \in \mathbb{R}$ be a real value such that

$$Q^0_{\mathcal{M}}(s,a) = q_{\text{init}} + \phi(s), \quad Q^0_{\mathcal{M}'}(s,a) = q_{\text{init}}.$$

At any moment in time, the current Q-value of any state-action pair is always equal to its initial value plus some Δ value denoting the total change in the Q-value across all updates:

$$Q_{\mathcal{M}}(s,a) = Q^0_{\mathcal{M}}(s,a) + \Delta Q_{\mathcal{M}}(s,a), \quad Q_{\mathcal{M}'}(s,a) = Q^0_{\mathcal{M}'}(s,a) + \Delta Q_{\mathcal{M}'}(s,a).$$

Show that if $\Delta Q_{\mathcal{M}}(s,a) = \Delta Q_{\mathcal{M}'}(s,a)$ for all $(s,a) \in \mathcal{S} \times \mathcal{A}$, then show that these two Q-learning agents yield identical updates for any state-action pair.