
CS234: Reinforcement Learning – Problem Session #3

Spring 2023-2024

Problem 1

Consider an infinite-horizon, discounted MDP M = ⟨S,A,R, T , γ⟩ where γ ∈ [0, 1) and the state-action
space is finite (|S ×A| < ∞). For any stochastic policy π : S → ∆(A), recall that the discounted stationary-
state distribution is defined such that, for any state s ∈ S,

dπ(s) = (1− γ)
∞∑
t=0

γtPπ(st = s),

where Pπ(st = s) denotes the probability that the (random) state st encountered by policy π at timestep t
is equal to s. Let β ∈ ∆(S) be an initial state distribution such that Pπ(s0 = s) = β(s) for all policies π and
any state s ∈ S.

1. Prove that for any state s′ ∈ S,

dπ(s′) = (1− γ)β(s′) + γ
∑
s∈S

∑
a∈A

T (s′ | s, a)π(a | s)dπ(s).
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2. Show that for any two policies π, π′, we have

||dπ − dπ
′
||1 ≤ 2γ

(1− γ)
Es∼dπ [DTV (π(· | s) || π′(· | s))] ,

where DTV (π(· | s) || π′(· | s)) = 1
2

∑
a∈A

|π(a | s) − π′(a | s)| is the total variation distance between

policies π and π′ at state s.

Hint: Use a “zero” term involving dπ.
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3. Denote the stationary state-action visitation distribution χπ ∈ ∆(S × A) of a policy as χπ(s, a) =
dπ(s)π(a | s). Show that for any two policies π, π′, we have

||χπ − χπ′
||1 ≤ 2

(1− γ)
Es∼dπ [DTV (π(· | s) || π′(· | s))] .

4. Define RMAX = max
(s,a)∈S×A

|R(s, a)| and show that

Es0∼β

[
V π(s0)− V π′

(s0)
]
≤ 2RMAX

(1− γ)
Es∼dπ [DTV (π(· | s) || π′(· | s))] .

Hint: Remember that Es0∼β [V
π(s0)] = R⊤χπ, where R ∈ R|S||A| is the vector of all MDP rewards,

and recall Hölder’s inequality.

3


