
CS234: Reinforcement Learning – Problem Session #6

Spring 2023-2024

Problem 1

Consider an infinite-horizon, discounted MDP M = ⟨S,A,R, T , γ⟩. As usual, for any policy π : S → ∆(A),
the value function induced by π is defined as

V π(s) = E

[ ∞∑
t=0

γtR(st, at) | s0 = s, π

]
.

1. For an arbitrary Z ∈ N, consider learning with Z +1 distinct discount factors γ0, γ1, . . . , γZ where the
final discount factor matches that of the MDP M, γZ = γ. Letting [Z] ≜ {1, 2, . . . , Z} denote the
index set, we define the following functions for any policy π:

V π
γz

= E

[ ∞∑
t=0

γt
zR(st, at) | s0 = s, π

]
Wπ

z = V π
γz

− V π
γz−1

, ∀z ∈ [Z]

where W0 = V π
γ0
.

Solution: The results of this part were derived by Romoff et al. [2019] who both empirically and
theoretically study the benefits of decomposing a single monolithic value function across multiple
time-scales through smaller discount factors.

(a) For any z ∈ [Z]; any policy π : S → ∆(A); and any s ∈ S, write an expression for V π
γz
(s)

exclusively in terms of {Wπ
0 ,W

π
1 , . . . ,W

π
Z}.

Solution: From the relationships defined above, we can see that

V π
γz
(s) =

z∑
i=0

Wπ
i (s).

(b) Show that Wπ
z obeys the following Bellman equation for any z ∈ [Z] and s ∈ S:

Wπ
z (s) = E a∼π(·|s)

s′∼T (·|s,a)

[
(γz − γz−1)V

π
γz−1

(s′) + γzW
π
z (s

′)
]

Solution: Just by expanding the corresponding Bellman equations for V π
γz

and V π
γz−1

, we have

Wπ
z (s) = V π

γz
− V π

γz−1

= Ea∼π(·|s)

[
R(s, a) + γzEs′∼T (·|s,a)

[
V π
γz
(s′)

]
−R(s, a)− γz−1Es′∼T (·|s,a)

[
V π
γz−1

(s′)
]]

= Ea∼π(·|s)

[
γzEs′∼T (·|s,a)

[
V π
γz
(s′)

]
− γz−1Es′∼T (·|s,a)

[
V π
γz−1

(s′)
]]

= Ea∼π(·|s)

[
γzEs′∼T (·|s,a)

[
Wπ

z (s
′) + V π

γz−1
(s′)

]
− γz−1Es′∼T (·|s,a)

[
V π
γz−1

(s′)
]]

= E a∼π(·|s)
s′∼T (·|s,a)

[
(γz − γz−1)V

π
γz−1

(s′) + γzWz(s
′)
]
.
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2. Let γ, β ∈ [0, 1) be two discount factors such that β ≤ γ. Let π : S → ∆(A) be an arbitrary policy
that induces value functions V π

γ and V π
β under the two discount factors, respectively. Similarly, define

the Bellman operators

Bπ
γV (s) = Ea∼π(·|s)

[
R(s, a) + γEs′∼T (·|s,a) [V (s′)]

]
Bπ
βV (s) = Ea∼π(·|s)

[
R(s, a) + βEs′∼T (·|s,a) [V (s′)]

]
.

With the reward upper bound RMAX = max
(s,a)∈S×A

R(s, a), prove that

||V π
γ − V π

β ||∞ ≤ (γ − β)RMAX

(1− γ)(1− β)
.

Solution: This result is given as Theorem 2 of [Petrik and Scherrer, 2008] and highlights the ap-
proximation error that can occur by using a smaller discount factor β than that of the true MDP,
γ.

||V π
γ − V π

β ||∞ = ||Bπ
γV

π
γ − Bπ

βV
π
β ||∞

= ||Bπ
γV

π
γ − Bπ

βV
π
γ + Bπ

βV
π
γ − Bπ

βV
π
β ||∞

≤ ||Bπ
γV

π
γ − Bπ

βV
π
γ ||∞ + ||Bπ

βV
π
γ − Bπ

βV
π
β ||∞

≤ ||Bπ
γV

π
γ − Bπ

βV
π
γ ||∞ + β||V π

γ − V π
β ||∞

= max
s∈S

|Ea∼π(·|s)
[
R(s, a) + γEs′∼T (·|s,a)

[
V π
γ (s′)

]
−R(s, a)− βEs′∼T (·|s,a)

[
V π
γ (s′)

]]
|+ β||V π

γ − V π
β ||∞

= max
s∈S

|Ea∼π(·|s)
[
γEs′∼T (·|s,a)

[
V π
γ (s′)

]
− βEs′∼T (·|s,a)

[
V π
γ (s′)

]]
|+ β||V π

γ − V π
β ||∞

= max
s∈S

|Ea∼π(·|s)
[
(γ − β)Es′∼T (·|s,a)

[
V π
γ (s′)

]]
|+ β||V π

γ − V π
β ||∞

≤ max
s∈S

|Ea∼π(·|s)

[
(γ − β)Es′∼T (·|s,a)

[
RMAX

(1− γ)

]]
|+ β||V π

γ − V π
β ||∞

=
(γ − β)RMAX

(1− γ)
+ β||V π

γ − V π
β ||∞

=⇒ (1− β)||V π
γ − V π

β ||∞ ≤ (γ − β)RMAX

(1− γ)

||V π
γ − V π

β ||∞ ≤ (γ − β)RMAX

(1− γ)(1− β)

3. Let α, γ ∈ [0, 1) be two discount factors such that γ ≤ α. Consider a new MDP M′ = ⟨S,A, T ′,R, α⟩
with a different transition function T ′ : S ×A → ∆(S) defined for λ ∈ [0, 1] as

T ′(s′ | s, a) = (1− λ)T (s′ | s, a) + λ1(s = s′), ∀(s, a, s′) ∈ S ×A× S.

In words, the new transition function T ′ follows the transitions of the original MDP T with probability
(1 − λ) and takes a self-looping transition with probability λ. We will use subscripts to distinguish
between value functions of M versus those of M′.

Assuming that both M and M′ are tabular, recall the matrix form of the Bellman equations for any
policy π:

V π
M = (I − γT π)

−1 Rπ V π
M′ = (I − αT ′π)

−1 Rπ,
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where

Rπ(s) = Ea∼π(·|s) [R(s, a)] T π(s′ | s) = Ea∼π(·|s) [T (s′ | s, a)] T ′π(s′ | s) = Ea∼π(·|s) [T ′(s′ | s, a)]

Solution: The results of this question are proven as part of Theorem 1 in [Jiang et al., 2015].

(a) Give a value of λ such that, for any policy π,

V π
M′ =

1− γ

1− α
· V π

M.

Solution: We can write the transition matrix in the new MDP M′ induced by any policy π as

T ′π = (1− λ)T π + λI,

where I is the |S| × |S| identity matrix. So, substituting in directly, we have

V π
M′ = (I − αT ′π)

−1 Rπ

= (I − α ((1− λ)T π + λI))
−1 Rπ

= ((1− αλ)I − α(1− λ)T π)
−1 Rπ

=

(
(1− αλ)

(
I − α(1− λ)

1− αλ
T π

))−1

Rπ

=
1

1− αλ

(
I − α(1− λ)

1− αλ
T π

)−1

Rπ.

We can compute the required value of λ as

α(1− λ)

1− αλ
= γ =⇒ λ =

α− γ

α(1− γ)
,

which means
1

1− αλ
=

1

1− α−γ
(1−γ)

=
1− γ

1− γ − α+ γ
=

1− γ

1− α
.

Substituting back in to the earlier equation yields

V π
M′ =

1

1− αλ

(
I − α(1− λ)

1− αλ
T π

)−1

Rπ

=
1− γ

1− α
(I − γT π)

−1 Rπ

=
1− γ

1− α
· V π

M.

(b) If π⋆ is the optimal policy of MDP M, prove that π⋆ is also optimal in M′.

Solution: By definition of the optimal policy, we know that π⋆ obeys the following inequality for
any other policy π:

V π⋆

M (s) ≥ V π
M(s), ∀s ∈ S.

Since 1−γ
1−α > 0, we can scale both sides to get

1− γ

1− α
· V π⋆

M (s) ≥ 1− γ

1− α
· V π

M(s), ∀s ∈ S.
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Applying this previous part, we see that for any other policy π,

V π⋆

M′(s) ≥ V π
M′(s), ∀s ∈ S.

Thus, by definition, π⋆ is also the optimal policy in MDP M′. This result illustrates that, for any
MDP with a particular discount factor, there exists a transition function for another MDP with
a larger discount factor such that the two MDPs have the same optimal policy.
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