CS234: Reinforcement Learning — Problem Session #4

Winter 2022-2023

Problem 1

Consider an infinite-horizon, discounted MDP M = (S, A, R, T,B,7) where v € [0,1), 8 € A(S) is the
initial state distribution, and the state-action space is finite (]S x A| < 00). For any policy 7 : S — A(A),
recall that the discounted stationary state distribution is defined for any state s’ € S as

d"(s') = (L=7)B(s) +7 DD T(s' | s,a)m(a | s)d"(s).
s€eSacA

Solution: For those who showed up on Zoom, my typo was swapping the Li-norm with the L..-norm.
Apologies for the confusion.

1. Show that for any two policies 7, 7', we have
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where Dy (7(- | s) || /(- | s)) = 2 3 |n(a | s) — 7/(a | s)| is the total variation distance between
acA

policies m and 7 at state s.

Solution: This result is given as Lemma 3 of Achiam et al. [2017]. Applying the definitions for the
visitation distributions of 7 and 7/, we have
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2. Denote the stationary state-action visitation distribution x™ € A(S x A) of a policy as x™(s,a) =
d™(s)m(a | s). Show that for any two policies m, 7/, we have
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Hint: Use a “zero” term involving d™.

Solution: Applying the definition of the stationary state-action distribution, we have
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3. Define Ryax = max  |R(s,a)| and show that
(s,a)ESx A
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Eagms [V7(s0) = V7 (50)] < 720)

Hint: Remember that Eq 5 [V™(s0)] = RTX™, where R € RISIAl is the vector of all MDP rewards,
and recall Holder’s inequality.

Eswgr [Drv (7(- | 5) | 7'(- | 5))].

Solution: This result appears as a corollary of Lemma 2 in [Abel et al., 2019], where Pinsker’s inequality
is used to express the result in terms of the expected KL-divergence between the two policies instead
of the total variation distance.

Leveraging the hint and the previous part, we see that
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