
CS234: Reinforcement Learning – Problem Session #5

Winter 2022-2023

Problem 1

One method for demonstrating provably-efficient exploration in multi-armed bandits (or reinforcement learn-
ing) is through a UCB-style analysis, where one constructs confidence sets around the reward (or value) of
each action (or state-action pair) and shows that these sets shrink, eventually converging to ground truth over
time. In this problem, we’ll explore an alternative, general proof technique for establishing regret bounds
using information theory, the branch of statistics dedicated to compression and communication. We will fo-
cus our attention on multi-armed bandits but these ideas can also be extended to the reinforcement-learning
setting.

Let’s start with a quick primer on information theory. Perhaps the most fundamental information-theoretic
quantity is entropy, quantifying how much uncertainty there is in the outcome of a particular random
variable. Let X be a discrete random variable taking values on a set X and with probability mass function
p(x) ∈ ∆(X ). Then, the entropy of X is defined as

H(X) = E [− log (p(x))] = −
∑
x∈X

p(x) log (p(x)) ,

where the logarithm is in base 2 resulting in entropy measured in bits of information (using the natural
logarithm with base e would be measured in nats).

For discrete random variables, we are guaranteed that the entropy is always non-negative H(X) ≥ 0, where
the inequality is tight (that is, holds with equality) whenever X follows a Dirac delta distribution and places
all probability mass on a single element of X (you may want to take a moment and convince yourself that
this makes sense for a measure of uncertainty).

(a) Using Jensen’s inequality, show that H(X) ≤ log (|X |).
Solution:

H(X) = E [− log (p(x))] = E
[
log

(
1

p(x)

)]
≤ log

(
E
[

1

p(x)

])
= log

(∑
x∈X

p(x)
1

p(x)

)
= log (|X |) .

(b) Give a distribution p(x) for X so that the previous inequality is tight.

Solution: Take p(x) = 1
|X | , ∀x ∈ X and observe that

H(X) = E [− log (p(x))] = E
[
log

(
1

p(x)

)]
= E

[
log

(
1
1

|X |

)]
= E [log (|X |)] = log (|X |) .
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While the entropy conveys our uncertainty about a random variable, it is often useful to think about uncer-
tainty when conditioning on a second random variable. For a discrete random variable Y taking values on
a set Y, the residual uncertainty in X after observing Y is quantified by the conditional entropy

H(X | Y ) = E [− log (p(x | y))] = −
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p(y)

)
= −

∑
y∈Y

∑
x∈X

p(y)p(x | y) log (p(x | y)) .

Like regular entropy, the conditional entropy is always non-negative for discrete random variables H(X |
Y ) ≥ 0. If H(X) gives our uncertainty in X and H(X | Y ) provides our uncertainty in X after observing Y ,
then we can naturally quantify the information gained about X from Y via the mutual information between
them:

I(X;Y ) = H(X)−H(X | Y ).

Now that we have a way to quantify how much information one random variable conveys about another,
let’s see how these quantities can be applied to analyze the regret of a multi-armed bandit.

Consider a multi-armed bandit problem over T ∈ N time periods with a finite number of arms A (|A| < ∞)
and a (potentially stochastic) reward function r : A → {0, 1}. If we knew the reward function exactly, then
there would be no uncertainty in the optimal arm (and finding it would require one call to numpy.argmax).
Consequently, it is our uncertainty in the underlying rewards of the environment that drives our uncertainty
in the optimal action A⋆ = argmax

a∈A
r(a). Meanwhile, in each time period t ∈ [T ], the agent’s policy samples

an action At to observe a reward Rt = r(At) and the cumulative regret over all T time periods is given by

Regret(T ) =

T∑
t=1

(r(A⋆)− r(At)) .

For Bayesian algorithms, we are interested in controlling the Bayesian regret

BayesRegret = E [Regret(T )] ,

where the expectation accounts for our prior beliefs in the rewards of the environment. Ultimately, in this
problem, we will prove that Thompson sampling obeys the following information-theoretic Bayesian regret
bound:

BayesRegret(T ) ≤
√

1

2
|A|H(A⋆)T .

Solution: This result was originally shown by Russo and Van Roy [2016].

(c) What is the best-case regret for a Thompson sampling agent? Give a prior distribution over the optimal
action A⋆ that achieves this best-case regret.

Solution: By assumption, Thompson sampling operates with a well-specified prior; that is, the prior
must place non-zero probability mass on the true optimal action. So, if the agent’s prior over the
optimal action A⋆ is a Dirac delta distribution centered on the true optimal action, then H(A⋆) = 0
and the Bayesian regret of Thompson sampling is also 0.

(d) What is the worst-case regret for a Thompson sampling agent? Give a prior distribution over the
optimal action A⋆ that achieves this worst-case regret.

Solution: In the worst case, the entropy of the discrete random variable A⋆ can be no worse than
H(A⋆) ≤ log (|A|), which is achieved by having a uniform random prior over all actions: P(A⋆ = a) =
1

|A| , ∀a ∈ A.

For any time period t ∈ [T ], let Et = (At, Rt) denote the observed experience at that timestep so that
Ht = (E1, E2, . . . , Et−1) is the random history of agent interactions with the environment observed at the
start of time period t, prior to observing Et.
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(e) Using the tower property of expectation, show thatBayesRegret(T ) = E
[

T∑
t=1

E [r(A⋆)− r(At) | Ht]

]
.

Define the ratio

Γt =
E [r(A⋆)− r(At) | Ht]

2

It(A⋆;Et)
, ∀t ∈ [T ],

where the numerator is the squared expected regret in time period t and the denominator is the information
gained about the optimal action A⋆ from the observed experience Et. Note that, just like the numerator is
conditioned on the current random history Ht, we use the t subscript in It to denote that information gain
is also conditioned on Ht.

(f) Suppose we know that, for all time periods t ∈ [T ], Γt ≤ Γ for some numerical constant Γ < ∞. Then,

show that E
[

T∑
t=1

E [r(A⋆)− r(At) | Ht]

]
≤

√
Γ · E

[
T∑

t=1

√
It(A⋆;Et)

]
.

Solution: By definition of the information ratio Γt in each time period t ∈ [T ], we have

E

[
T∑

t=1

E [r(A⋆)− r(At) | Ht]

]
= E

[
T∑

t=1

√
Γt · It(A⋆;Et)

]
≤
√

Γ · E

[
T∑

t=1

√
It(A⋆;Et)

]
.

(g) Recall that the Cauchy-Schwarz inequality says that for any two vectors u, v ∈ Rd,(
d∑

i=1

uivi

)2

≤

(
d∑

i=1

u2
i

)(
d∑

i=1

v2i

)
.

Using the Cauchy-Schwarz inequality and Jensen’s inequality, show that

E

[
T∑

t=1

√
It(A⋆;Et)

]
≤

√√√√T · E

[
T∑

t=1

It(A⋆;Et)

]
.

Solution: Taking ut = 1 and vt =
√
It(A⋆;Et) for the Cauchy-Schwarz inequality, we have

E

[
T∑

t=1

√
It(A⋆;Et)

]
≤ E


√√√√T ·

T∑
t=1

It(A⋆;Et)

 ≤

√√√√T · E

[
T∑

t=1

It(A⋆;Et)

]

As the agent progresses over time, not all experiences will carry new information about the optimal action
A⋆, given everything that has already been seen up to that point. The conditional mutual information helps
quantify the information gain between two random variables given the context of a third random variable Z:

I(X;Y | Z) = H(X | Z)−H(X | Y,Z).

For our purposes, while It(A⋆;Et) quantifies information given the random history experienced by the agent
so far, we can take an expectation to average over all possible agent histories and get the conditional mutual
information

E [It(A⋆;Et)] = I(A⋆;Et | Ht).
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(h) Show that E
[

T∑
t=1

It(A⋆;Et)

]
=

T∑
t=1

I(A⋆;Et | Ht).

Solution: Applying the identity provided above after applying linearity of expectation immediately
yields

E

[
T∑

t=1

It(A⋆;Et)

]
=

T∑
t=1

E [It(A⋆;Et)]

T∑
t=1

I(A⋆;Et | Ht).

One very useful property of mutual information is that it allows us to decompose the information gained
from several random variables. For any sequence of K ∈ N random variables Z1, . . . , ZK , the chain rule of

mutual information says that I(X;Z1, . . . , ZK) =
K∑

k=1

I(X;Zk | Z1, . . . , Zk−1).

(i) Using the chain rule of mutual information, show that
T∑

t=1
I(A⋆;Et | Ht) ≤ H(A⋆).

Solution: Directly applying the chain rule of mutual information with the historyHt = (E1, E2, . . . , Et−1)
yields

T∑
t=1

I(A⋆;Et | Ht) =

T∑
t=1

I(A⋆;Et | E1, E2, . . . , Et−1) = I(A⋆;E1, . . . , ET ) = I(A⋆;HT ) = H(A⋆)−H(A⋆ | HT )︸ ︷︷ ︸
≥0

≤ H(A⋆).

(j) A fact (that you may use without proof) is that Thompson sampling applied to a multi-armed bandit
problem like the one described above has Γt ≤ 1

2 |A|, for all time periods t ∈ [T ]. Show that Thompson
sampling obeys the following Bayesian regret bound:

BayesRegret(T ) ≤
√

1

2
|A|H(A⋆)T .

Solution: Putting all the previous parts together, we have

BayesRegret(T ) = E

[
T∑

t=1

E [r(A⋆)− r(At) | Ht]

]

≤
√

Γ · E

[
T∑

t=1

√
It(A⋆;Et)

]

≤

√√√√ΓT · E

[
T∑

t=1

It(A⋆;Et)

]

=

√√√√ΓT ·
T∑

t=1

I(A⋆;Et | Ht)

≤
√

ΓTH(A⋆)

=

√
1

2
|A|H(A⋆)T .
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