CS234 Problem Session

Week 6: Feb 17

1) [CA Session] Conservative Policy Iteration

Let us consider an MDP with a fixed start state s_0. Let us consider the conservative policy update rule:

$$
\pi_{new}(s,a) = (1-\alpha)\pi(s,a) + \alpha\pi'(s,a)
$$

for some $\alpha \in [0,1]$.

(a) What is $\pi_{new}(s,a)$ when $\alpha = 1$?

Recall that $A^\pi(s,a) = Q^\pi(s,a) - V^\pi(s)$.

Let $P(s_t; \pi)$ be the distribution over states at time t while following π from the start state s_0. Recall that the discounted stationary state distribution of a policy π is $d^\pi(s) = (1-\gamma)\sum_{t=0}^{\infty} \gamma^t P(s_t = s; \pi)$. We now define the policy advantage of some policy π' with respect to a policy π as $A^\pi(\pi') = \mathbb{E}_{s \sim d^\pi}[\mathbb{E}_{a \sim \pi'(s)}[A^\pi(s,a)]]$. Recall Lemma 1 from assignment 2.

Lemma 1: For all policies π', π, we have that $V^\pi'(s_0) - V^\pi(s_0) = \frac{1}{1-\gamma} \mathbb{E}_{s \sim d^\pi}[\mathbb{E}_{a \sim \pi'(s)}[A^\pi(s,a)]]$

(b) How does $V^\pi'(s_0) - V^\pi(s_0)$ differ from the policy advantage $A^\pi(\pi')$? A high-level description in words will suffice.
(c) Compute a simplified expression for $A_\pi(\pi_{new})$ in terms of the policy advantage of π'.

With π_{new}, at any given timestep, the probability that we select an action according to π' is α. Let us define the random variable c_t as the number of actions chosen from π' before time t.

(d) Let us denote $\rho_t = Pr(c_t \geq 1)$. Compute an expression for ρ_t in terms of α and t.

Now let $\epsilon = \max_s |E_{a \sim \pi'(s)}[A^\pi(s, a)]|$.

(e) Prove that $E_{s \sim P(s_t; \pi_{new})} [\sum_a \pi_{new}(s, a) A^\pi(s, a)] \geq \alpha E_{s \sim P(s_t; \pi')} [\sum_a \pi'(s, a) A^\pi(s, a)] - 2\alpha \rho_t \epsilon$.

(f) Now let us lower bound the improvement of our policy. Please prove that the following equation holds:
\[V_{\pi_{\text{new}}}(s_0) - V_{\pi}(s_0) \geq \frac{\alpha}{1 - \gamma} (A_{\pi}(\pi') - \frac{2\alpha\gamma\epsilon}{1 - \gamma(1 - \alpha)}) \]
2) [Breakout Rooms] Trajectory Likelihoods

Suppose π_1 and π_2 are two different stochastic policies. We now observe a trajectory $H = (S_0, A_0, R_0, S_1, ..., S_{T-1}, A_{T-1}, R_{T-1})$. Assume the rewards are finite and denote $R(s, a, s', r) = Pr(R_t = r | S_t = s, A_t = a, S_{t+1} = s')$.

(a) Simplify $\frac{Pr(H|\pi_1)}{Pr(H|\pi_2)}$ using terms from the MDP definition. Your final answer should be able to be computed without needing to know the transition function, the reward function, or the reward distribution.
3) [Breakout Rooms] Off Policy Actor Critic Policy Gradients

We will derive an expression for the policy gradient for a new objective function, J'. This new objective is similar to one used in off-policy actor-critics. Assume there is a fixed policy π_b. Let

$$d'(s) = \sum_{t=0}^{L-1} Pr(S_t = s | \pi_b)$$

The objective function J' is defined as

$$J'(\theta) = \sum_{s \in S} d'(s) E[R_t | S_t = s, \theta]$$

Derive an expression for the policy gradient for this objective. The terms in your answer should only be terms used in defining an MDP (including the reward function defined as $R(s, a)$). Note that θ are not the parameters of π_b, but the parameters of another policy π.
