Class Structure

- Last time: Fast Learning, Exploration/Exploitation Part 1
- This Time: Fast Learning Part II
- Next time: Batch RL
Table of Contents

1. Metrics for evaluating RL algorithms
2. Principles for RL Exploration
3. Probability Matching
4. Information State Search
5. MDPs
6. Principles for RL Exploration
7. Metrics for evaluating RL algorithms
Performance Criteria of RL Algorithms

- Empirical performance
- Convergence (to something ...)
- Asymptotic convergence to optimal policy
- Finite sample guarantees: probably approximately correct
- Regret (with respect to optimal decisions)
- Optimal decisions given information have available
- PAC uniform
<table>
<thead>
<tr>
<th></th>
<th>Section Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Metrics for evaluating RL algorithms</td>
</tr>
<tr>
<td>2</td>
<td>Principles for RL Exploration</td>
</tr>
<tr>
<td>3</td>
<td>Probability Matching</td>
</tr>
<tr>
<td>4</td>
<td>Information State Search</td>
</tr>
<tr>
<td>5</td>
<td>MDPs</td>
</tr>
<tr>
<td>6</td>
<td>Principles for RL Exploration</td>
</tr>
<tr>
<td>7</td>
<td>Metrics for evaluating RL algorithms</td>
</tr>
</tbody>
</table>
Principles

- Naive Exploration (last time)
- Optimistic Initialization (last time)
- Optimism in the Face of Uncertainty (last time + this time)
- Probability Matching (last time + this time)
- Information State Search (this time)
Multiarmed Bandits

- Multi-armed bandit is a tuple of \((A, R)\)
- \(A\) : known set of \(m\) actions
- \(R^a(r) = \mathbb{P}[r | a]\) is an unknown probability distribution over rewards
- At each step \(t\) the agent selects an action \(a_t \in A\)
- The environment generates a reward \(r_t \sim R^{a_t}\)
- Goal: Maximize cumulative reward \(\sum_{\tau=1}^{t} r_{\tau}\)
Regret

- **Action-value** is the mean reward for action a

$$Q(a) = \mathbb{E}[r \mid a]$$

- **Optimal value** V^*

$$V^* = Q(a^*) = \max_{a \in A} Q(a)$$

- **Regret** is the opportunity loss for one step

$$l_t = \mathbb{E}[V^* - Q(a_t)]$$

- **Total Regret** is the total opportunity loss

$$L_t = \mathbb{E}\left[\sum_{\tau=1}^{t} V^* - Q(a_\tau)\right]$$

- Maximize cumulative reward \iff minimize total regret
Optimism Under Uncertainty: Upper Confidence Bounds

- Estimate an upper confidence $\hat{U}_t(a)$ for each action value, such that $Q(a) \leq \hat{Q}_t(a) + \hat{U}_t(a)$ with high probability.
- This depends on the number of times $N(a)$ has been selected:
 - Small $N_t(a) \rightarrow$ large $\hat{U}_t(a)$ (estimate value is uncertain)
 - Large $N_t(a) \rightarrow$ small $\hat{U}_t(a)$ (estimate value is accurate)
- Select action maximizing Upper Confidence Bound (UCB)

$$a_t = \arg \max a \in A \hat{Q}_t(a) + \hat{U}_t(a)$$
This leads to the UCB1 algorithm

\[a_t = \arg \max_{a \in A} Q(a) + \sqrt{\frac{2 \log t}{N_t(a)}} \]

Theorem: The UCB algorithm achieves logarithmic asymptotic total regret

\[\lim_{t \to \infty} L_t \leq 8 \log t \sum_{a \mid \Delta_a > 0} \Delta_a \]
Consider deciding how to best treat patients with broken toes

Imagine have 3 possible options: (1) surgery (2) buddy taping the broken toe with another toe, (3) do nothing

Outcome measure is binary variable: whether the toe has healed (+1) or not healed (0) after 6 weeks, as assessed by x-ray

Note: This is a made up example. This is not the actual expected efficacies of the various treatment options for a broken toe
Consider deciding how to best treat patients with broken toes

Imagine have 3 common options: (1) surgery (2) surgical boot (3) buddy taping the broken toe with another toe

Outcome measure is binary variable: whether the toe has healed (+1) or not (0) after 6 weeks, as assessed by x-ray

Model as a multi-armed bandit with 3 arms, where each arm is a Bernoulli variable with an unknown parameter θ_i

Check your understanding: what does a pull of an arm / taking an action correspond to? Why is it reasonable to model this as a multi-armed bandit instead of a Markov decision process?

Note: This is a made up example. This is not the actual expected efficacies of the various treatment options for a broken toe.
Imagine true (unknown) parameters for each arm (action) are

- surgery: $Q(a^1) = \theta_1 = .95$
- buddy taping: $Q(a^2) = \theta_2 = .9$
- doing nothing: $Q(a^3) = \theta_3 = .1$

\[17\] Note: This is a made up example. This is not the actual expected efficacies of the various treatment options for a broken toe.
Toy Example: Ways to Treat Broken Toes, Thompson Sampling

- True (unknown) parameters for each arm (action) are
 - surgery: $Q(a_1) = \theta_1 = .95$
 - buddy taping: $Q(a_2) = \theta_2 = .9$
 - doing nothing: $Q(a_3) = \theta_3 = .1$

- Optimism under uncertainty, UCB1 (Auer, Cesa-Bianchi, Fischer 2002)
 1. Sample each arm once

\(^{19}\)Note: This is a made up example. This is not the actual expected efficacies of the various treatment options for a broken toe.
True (unknown) parameters for each arm (action) are
- surgery: $Q(a^1) = \theta_1 = 0.95$
- buddy taping: $Q(a^2) = \theta_2 = 0.9$
- doing nothing: $Q(a^3) = \theta_3 = 0.1$

UCB1 (Auer, Cesa-Bianchi, Fischer 2002)
1. Sample each arm once
 - Take action a^1 ($r \sim \text{Bernoulli}(0.95)$, get +1, $Q(a^1) = 1$
 - Take action a^2 ($r \sim \text{Bernoulli}(0.90)$, get +1, $Q(a^2) = 1$
 - Take action a^3 ($r \sim \text{Bernoulli}(0.1)$, get 0, $Q(a^3) = 0$

\footnote{Note: This is a made up example. This is not the actual expected efficacies of the various treatment options for a broken toe}
Toy Example: Ways to Treat Broken Toes, Optimism

- True (unknown) parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$

- UCB1 (Auer, Cesa-Bianchi, Fischer 2002)

 1. Sample each arm once
 - Take action a^1 ($r \sim\text{Bernoulli}(0.95)$, get +1, $Q(a^1) = 1$
 - Take action a^2 ($r \sim\text{Bernoulli}(0.90)$, get +1, $Q(a^2) = 1$
 - Take action a^3 ($r \sim\text{Bernoulli}(0.1)$, get 0, $Q(a^3) = 0$

 2. Set $t = 3$, Compute upper confidence bound on each action

$$ucb(a) = Q(a) + \sqrt{\frac{2\ln t}{N_t(a)}}$$

Note: This is a made up example. This is not the actual expected efficacies of the various treatment options for a broken toe.
True (unknown) parameters for each arm (action) are
- surgery: $Q(a^1) = \theta_1 = .95$
- buddy taping: $Q(a^2) = \theta_2 = .9$
- doing nothing: $Q(a^3) = \theta_3 = .1$

UCB1 (Auer, Cesa-Bianchi, Fischer 2002)
1. Sample each arm once
 - Take action a^1 ($r \sim \text{Bernoulli}(0.95)$, get +1, $Q(a^1) = 1$
 - Take action a^2 ($r \sim \text{Bernoulli}(0.90)$, get +1, $Q(a^2) = 1$
 - Take action a^3 ($r \sim \text{Bernoulli}(0.1)$, get 0, $Q(a^3) = 0$
2. Set $t = 3$, Compute upper confidence bound on each action

 $$ucb(a) = Q(a) + \sqrt{\frac{2\ln t}{N_t(a)}}$$
3. $t = 3$, Select action $a_t = \arg\max_a ucb(a)$,
4. Observe reward 1
5. Compute upper confidence bound on each action

\textit{Note: This is a made up example. This is not the actual expected efficacies of the various treatment options for a broken toe.}
True (unknown) parameters for each arm (action) are
- surgery: $Q(a^1) = \theta_1 = .95$
- buddy taping: $Q(a^2) = \theta_2 = .9$
- doing nothing: $Q(a^3) = \theta_3 = .1$

UCB1 (Auer, Cesa-Bianchi, Fischer 2002)
1. Sample each arm once
 - Take action a^1 ($r \sim \text{Bernoulli}(0.95)$, get +1, $Q(a^1) = 1$
 - Take action a^2 ($r \sim \text{Bernoulli}(0.90)$, get +1, $Q(a^2) = 1$
 - Take action a^3 ($r \sim \text{Bernoulli}(0.1)$, get 0, $Q(a^3) = 0$
2. Set $t = 3$, Compute upper confidence bound on each action
 $$ucb(a) = Q(a) + \sqrt{\frac{2\ln t}{N_t(a)}}$$
3. $t = t + 1$, Select action $a_t = \arg\max_a ucb(a)$,
4. Observe reward 1
5. Compute upper confidence bound on each action

Note: This is a made up example. This is not the actual expected efficacies of the various treatment options for a broken toe.
Toy Example: Ways to Treat Broken Toes, Optimism, Assessing Regret

- True (unknown) parameters for each arm (action) are:
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$

- UCB1 (Auer, Cesa-Bianchi, Fischer 2002)

<table>
<thead>
<tr>
<th>Action</th>
<th>Optimal Action</th>
<th>Regret</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^1</td>
<td>a^1</td>
<td></td>
</tr>
<tr>
<td>a^2</td>
<td>a^1</td>
<td></td>
</tr>
<tr>
<td>a^3</td>
<td>a^1</td>
<td></td>
</tr>
<tr>
<td>a^1</td>
<td>a^1</td>
<td></td>
</tr>
<tr>
<td>a^2</td>
<td>a^1</td>
<td></td>
</tr>
</tbody>
</table>
An alternative would be to always select the arm with the highest lower bound.
Why can this yield linear regret?
Consider a two arm case for simplicity.
Table of Contents

1. Metrics for evaluating RL algorithms
2. Principles for RL Exploration
3. Probability Matching
4. Information State Search
5. MDPs
6. Principles for RL Exploration
7. Metrics for evaluating RL algorithms
Assume have a parametric distribution over rewards for each arm

Probability matching selects action a according to probability that a is the optimal action

$$\pi(a \mid h_t) = \mathbb{P}[Q(a) > Q(a'), \forall a' \neq a \mid h_t]$$

Probability matching is optimistic in the face of uncertainty
- Uncertain actions have higher probability of being max
- Can be difficult to compute analytically from posterior
Thompson sampling implements probability matching

- Thompson sampling:

\[
\pi(a \mid h_t) = \mathbb{P}[Q(a) > Q(a'), \forall a' \neq a \mid h_t] \\
= \mathbb{E}_{R \mid h_t} \left[1(a = \arg\max_{a \in A} Q(a)) \right]
\]
Thompson sampling implements probability matching

- Thompson sampling:
 \[\pi(a \mid h_t) = \mathbb{P}[Q(a) > Q(a'), \forall a' \neq a \mid h_t] = \mathbb{E}_{\mathcal{R} \mid h_t} \left[1(a = \arg \max_{a \in \mathcal{A}} Q(a)) \right]\]

- Use Bayes law to compute posterior distribution \(p[\mathcal{R} \mid h_t]\)
- **Sample** a reward distribution \(\mathcal{R}\) from posterior
- Compute action-value function \(Q(a) = \mathbb{E}[\mathcal{R}_a]\)
- Select action maximizing value on sample, \(a_t = \arg \max_{a \in \mathcal{A}} Q(a)\)
Thompson sampling implements probability matching

- Thompson sampling achieves Lai and Robbins lower bound
- Last checked: bounds for optimism are tighter than for Thompson sampling
- But empirically Thompson sampling can be extremely effective
Thompson Sampling for News Article Recommendation (Chapelle and Li, 2010)

- Contextual bandit: input context which impacts reward of each arm, context sampled iid each step
- Arms = articles
- Reward = click (+1) on article \(Q(a) = \text{click through rate} \)
Toy Example: Ways to Treat Broken Toes, Thompson Sampling

- True (unknown) Bernoulli parameters for each arm/action
- Surgery: $\theta_1 = .95$ / Taping: $\theta_2 = .9$ / Nothing: $\theta_3 = .1$
- Thompson sampling:
 - Place a prior over each arm’s parameter. Here choose Beta(1,1) (Uniform)
 - Sample a Bernoulli parameter given current prior over each arm
 Beta(1,1), Beta(1,1), Beta(1,1):
Toy Example: Ways to Treat Broken Toes, Thompson Sampling

- True (unknown) Bernoulli parameters for each arm/action
- Surgery: $\theta_1 = .95$ / Taping: $\theta_2 = .9$ / Nothing: $\theta_3 = .1$
- Thompson sampling:
- Place a prior over each arm’s parameter. Here choose Beta(1,1)
 1. Sample a Bernoulli parameter given current prior over each arm Beta(1,1), Beta(1,1), Beta(1,1): 0.3 0.5 0.6
 2. Select $a = \arg\max_{a \in A} Q(a) = \arg\max_{a \in A} \theta(a) = $

Note: This is a made up example. This is not the actual expected efficacies of the various treatment options for a broken toe.
Toy Example: Ways to Treat Broken Toes, Thompson Sampling

- True (unknown) Bernoulli parameters for each arm/action
 - Surgery: \(\theta_1 = 0.95 \) / Taping: \(\theta_2 = 0.9 \) / Nothing: \(\theta_3 = 0.1 \)
- Thompson sampling:
 1. Place a prior over each arm’s parameter. Here choose Beta(1,1)
 2. Per arm, sample a Bernoulli \(\theta \) given prior: 0.3 0.5 0.6
 3. Select \(a_t = \arg \max_{a \in A} Q(a) = \arg \max_{a \in A} \theta(a) = 3 \)
 4. Observe the patient outcome’s outcome: 0
 5. Update the posterior over the \(Q(a_t) = Q(a^3) \) value for the arm pulled
Toy Example: Ways to Treat Broken Toes, Thompson Sampling

- True (unknown) Bernoulli parameters for each arm/action
 - Surgery: $\theta_1 = 0.95$ / Taping: $\theta_2 = 0.9$ / Nothing: $\theta_3 = 0.1$
- Thompson sampling:
 - Place a prior over each arm’s parameter. Here choose Beta(1,1)
 - Sample a Bernoulli parameter given current prior over each arm
 - Beta(1,1), Beta(1,1), Beta(1,1): 0.3 0.5 0.6
 - Select $a_t = \arg\max_{a \in A} Q(a) = \arg\max_{a \in A} \theta(a) = 3$
 - Observe the patient outcome’s outcome: 0
 - Update the posterior over the $Q(a_t) = Q(a^1)$ value for the arm pulled
 - Beta(c_1, c_2) is the conjugate distribution for Bernoulli
 - If observe 1, $c_1 + 1$ else if observe 0 $c_2 + 1$
 - New posterior over Q value for arm pulled is:
 - New posterior $p(Q(a^3)) = p(\theta(a_3) = \text{Beta}(1,2)$
Toy Example: Ways to Treat Broken Toes, Thompson Sampling

- True (unknown) Bernoulli parameters for each arm/action
 - Surgery: $\theta_1 = 0.95$ / Taping: $\theta_2 = 0.9$ / Nothing: $\theta_3 = 0.1$
- Thompson sampling:
 - Place a prior over each arm’s parameter. Here choose $\text{Beta}(1,1)$
 1. Sample a Bernoulli parameter given current prior over each arm $\text{Beta}(1,1)$, $\text{Beta}(1,1)$, $\text{Beta}(1,1)$: 0.3 0.5 0.6
 2. Select $a_t = \arg \max_{a \in A} Q(a) = \arg \max_{a \in A} \theta(a) = 1$
 3. Observe the patient outcome's outcome: 0
 4. New posterior $p(Q(a^1)) = p(\theta(a_1) = \text{Beta}(1, 2)$
Toy Example: Ways to Treat Broken Toes, Thompson Sampling

- True (unknown) Bernoulli parameters for each arm/action
 - Surgery: $\theta_1 = .95$ / Taping: $\theta_2 = .9$ / Nothing: $\theta_3 = .1$

- Thompson sampling:
 - Place a prior over each arm’s parameter. Here choose Beta(1,1)
 - Sample a Bernoulli parameter given current prior over each arm
 - Beta(1,1), Beta(1,1), Beta(1,2): 0.7, 0.5, 0.3
Toy Example: Ways to Treat Broken Toes, Thompson Sampling

- True (unknown) Bernoulli parameters for each arm/action
 - Surgery: $\theta_1 = 0.95$ / Taping: $\theta_2 = 0.9$ / Nothing: $\theta_3 = 0.1$
- Thompson sampling:
 - Place a prior over each arm’s parameter. Here choose Beta(1,1)
 1. Sample a Bernoulli parameter given current prior over each arm
 Beta(1,1), Beta(1,1), Beta(1,2): 0.7, 0.5, 0.3
 2. Select $a_t = \arg\max_{a \in A} Q(a) = \arg\max_{a \in A} \theta(a) = 1$
 3. Observe the patient outcome’s outcome: 1
 4. New posterior $p(Q(a^1)) = p(\theta(a_1) = \text{Beta}(2,1)$

![Graph showing linear relationship]
Toy Example: Ways to Treat Broken Toes, Thompson Sampling

- True (unknown) Bernoulli parameters for each arm/action
 - Surgery: $\theta_1 = 0.95$
 - Taping: $\theta_2 = 0.9$
 - Nothing: $\theta_3 = 0.1$

- Thompson sampling:
 - Place a prior over each arm’s parameter. Here choose Beta(1,1)
 1. Sample a Bernoulli parameter given current prior over each arm
 Beta(2,1), Beta(1,1), Beta(1,2): 0.71, 0.65, 0.1
 2. Select $a_t = \arg \max_{a \in A} Q(a) = \arg \max_{a \in A} \theta(a) = 1$
 3. Observe the patient outcome’s outcome: 1
 4. New posterior $p(Q(a^1)) = p(\theta(a_1) = \text{Beta}(3,1))$
Toy Example: Ways to Treat Broken Toes, Thompson Sampling

- True (unknown) Bernoulli parameters for each arm/action
 - Surgery: $\theta_1 = 0.95$ / Taping: $\theta_2 = 0.9$ / Nothing: $\theta_3 = 0.1$
- Thompson sampling:
 - Place a prior over each arm’s parameter. Here choose Beta(1,1)
 1. Sample a Bernoulli parameter given current prior over each arm: Beta(2,1), Beta(1,1), Beta(1,2): 0.75, 0.45, 0.4
 2. Select $a_t = \arg\max_{a \in A} Q(a) = \arg\max_{a \in A} \theta(a) = 1$
 3. Observe the patient outcome’s outcome: 1
 4. New posterior $p(Q(a^1)) = p(\theta(a_1) = \text{Beta}(4,1))$
Surgery: $\theta_1 = .95$ / Taping: $\theta_2 = .9$ / Nothing: $\theta_3 = .1$

How does the sequence of arm pulls compare in this example so far?

<table>
<thead>
<tr>
<th>Optimism</th>
<th>TS</th>
<th>Optimal</th>
<th>Regret Optimism</th>
<th>Regret TS</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^1</td>
<td>a^3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a^2</td>
<td>a^1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a^3</td>
<td>a^1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a^3</td>
<td>a^1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a^1</td>
<td>a^1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a^2</td>
<td>a^1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Toy Example: Ways to Treat Broken Toes, Thompson Sampling vs Optimism

- Surgery: $\theta_1 = .95$ / Taping: $\theta_2 = .9$ / Nothing: $\theta_3 = .1$

- Incurred regret?

<table>
<thead>
<tr>
<th>Optimism</th>
<th>TS</th>
<th>Optimal</th>
<th>Regret</th>
<th>Optimism</th>
<th>Regret TS</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^1</td>
<td>a^3</td>
<td>a^1</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>a^2</td>
<td>a^1</td>
<td>a^1</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a^3</td>
<td>a^1</td>
<td>a^1</td>
<td>0.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a^1</td>
<td>a^1</td>
<td>a^1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a^2</td>
<td>a^1</td>
<td>a^1</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Theoretical regret bounds specify how regret grows with T
Could be making lots of little mistakes or infrequent large ones
May care about bounding the number of non-small errors
More formally, probably approximately correct (PAC) results state that the algorithm will choose an action a whose value is ϵ-optimal ($Q(a) \geq Q(a^*) - \epsilon$) with probability at least $1 - \delta$ on all but a polynomial number of steps
Polynomial in the problem parameters (number of actions, ϵ, δ, etc)
Exist PAC algorithms based on optimism or Thompson sampling
Toy Example: Probably Approximately Correct and Regret

- Surgery: $\theta_1 = .95$ / Taping: $\theta_2 = .9$ / Nothing: $\theta_3 = .1$
- Let $\epsilon = 0.05$.
- $O =$ Optimism, $TS =$ Thompson Sampling: $W/\in \epsilon = I(Q(a_t) \geq Q(a^*) - \epsilon)$

<table>
<thead>
<tr>
<th>O</th>
<th>TS</th>
<th>Optimal</th>
<th>O Regret</th>
<th>O W/\in \epsilon</th>
<th>TS Regret</th>
<th>TS W/\in \epsilon</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^1</td>
<td>a^3</td>
<td>a^1</td>
<td>0</td>
<td></td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>a^2</td>
<td>a^1</td>
<td>a^1</td>
<td>0.05</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>a^3</td>
<td>a^1</td>
<td>a^1</td>
<td>0.85</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>a^1</td>
<td>a^1</td>
<td>a^1</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>a^2</td>
<td>a^1</td>
<td>a^1</td>
<td>0.05</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Surgery: $\theta_1 = .95$ / Taping: $\theta_2 = .9$ / Nothing: $\theta_3 = .1$

Let $\epsilon = 0.05$.

$O = \text{Optimism, TS = Thompson Sampling: } W/\text{in } \epsilon = I(Q(a_t) \geq Q(a^*) - \epsilon)$

<table>
<thead>
<tr>
<th></th>
<th>TS</th>
<th>Optimal</th>
<th>O Regret</th>
<th>O W/\text{in } \epsilon</th>
<th>TS Regret</th>
<th>TS W/\text{in } \epsilon</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^1</td>
<td>a^3</td>
<td>a^1</td>
<td>0</td>
<td>Y</td>
<td>0.85</td>
<td>N</td>
</tr>
<tr>
<td>a^2</td>
<td>a^1</td>
<td>a^1</td>
<td>0.05</td>
<td>Y</td>
<td>0</td>
<td>Y</td>
</tr>
<tr>
<td>a^3</td>
<td>a^1</td>
<td>a^1</td>
<td>0.85</td>
<td>N</td>
<td>0</td>
<td>Y</td>
</tr>
<tr>
<td>a^1</td>
<td>a^1</td>
<td>a^1</td>
<td>0</td>
<td>Y</td>
<td>0</td>
<td>Y</td>
</tr>
<tr>
<td>a^2</td>
<td>a^1</td>
<td>a^1</td>
<td>0.05</td>
<td>Y</td>
<td>0</td>
<td>Y</td>
</tr>
</tbody>
</table>
Table of Contents

1. Metrics for evaluating RL algorithms
2. Principles for RL Exploration
3. Probability Matching
4. Information State Search
5. MDPs
6. Principles for RL Exploration
7. Metrics for evaluating RL algorithms
Exploration is useful because it gains information.

Can we quantify the value of information (VOI)?

- How much reward a decision-maker would be prepared to pay in order to have that information, prior to making a decision.
- Long-term reward after getting information - immediate reward.
Consider bandit where only get to make a **single** decision

Oil company considering buying rights to drill in 1 of 5 locations

1 of locations contains $10 million worth of oil, others 0

Cost of buying rights to drill is $2 million

Seismologist says for a fee will survey one of 5 locations and report back definitively whether that location does or does not contain oil

What should one consider paying seismologist?
Relevant Background: Value of Information Example

- 1 of locations contains $10 million worth of oil, others 0
- Cost of buying rights to drill is $2 million
- Seismologist says for a fee will survey one of 5 locations and report back definitively whether that location does or does not contain oil
- Value of information: expected profit if ask seismologist minus expected profit if don’t ask
- Expected profit if don’t ask:
 - Guess at random

\[
= \frac{1}{5}(10 - 2) + \frac{4}{5}(0 - 2) = 0
\]
1 of locations contains 10 million worth of oil, others 0

Cost of buying rights to drill is 2 million

Seismologist says for a fee will survey one of 5 locations and report back definitively whether that location does or does not contain oil

Value of information: expected profit if ask seismologist minus expected profit if don’t ask

Expected profit if don’t ask:
- Guess at random
 \[
 \frac{1}{5}(10 - 2) + \frac{4}{5}(0 - 2) = 0
 \]

Expected profit if ask:
- If one surveyed has oil, expected profit is: $10 - 2 = 8$
- If one surveyed doesn’t have oil, expected profit: (guess at random from other locations) $\frac{1}{4}(10 - 2) - \frac{3}{4}(-2) = 0.5$
- Weigh by probability will survey location with oil: $\frac{1}{5}8 + \frac{4}{5}0.5 = 2$

VOI: $2 - 0 = 2$
Back to making a sequence of decisions under uncertainty

Information gain is higher in uncertain situations

But need to consider value of that information

Would it change our decisions?

Expected utility benefit
So far viewed bandits as a simple fully observable Markov decision process (where actions don’t impact next state)

Beautiful idea: frame bandits as a partially observable Markov decision process where the hidden state is the mean reward of each arm
So far viewed bandits as a simple fully observable Markov decision process (where actions don’t impact next state)

Beautiful idea: frame bandits as a partially observable Markov decision process where the hidden state is the mean reward of each arm

(Hidden) State is static

Actions are same as before, pulling an arm

Observations: Sample from reward model given hidden state

POMDP planning = Optimal Bandit learning
POMDP belief state / information state \tilde{s} is posterior over hidden parameters (e.g. mean reward of each arm)

\tilde{s} is a statistic of the history, $\tilde{s} = f(h_t)$

Each action a causes a transition to a new information state \tilde{s}' (by adding information), with probability $P^a_{\tilde{s}, \tilde{s}'}$

Equivalent to a POMDP

Or a MDP $\tilde{\mathcal{M}} = (\tilde{S}, A, \tilde{P}, \tilde{R}, \gamma)$ in augmented information state space
Consider a Bernoulli bandit such that $\mathcal{R}^a = \mathcal{B}(\mu_a)$
e.g. Win or lose a game with probability μ_a
Want to find which arm has the highest μ_a
The information state is $\tilde{s} = (\alpha, \beta)$
- α_a counts the pulls of arm a where the reward was 0
- β_a counts the pulls of arm a where the reward was 1
We now have an infinite MDP over information states.

This MDP can be solved by reinforcement learning.

Model-free reinforcement learning (e.g. Q-learning)

Bayesian model-based RL (e.g. Gittins indices)

This approach is known as Bayes-adaptive RL: Finds Bayes-optimal exploration/exploitation trade-off with respect to prior distribution.

In other words, selects actions that maximize expected reward given information have so far.

Check your understanding: Can an algorithm that optimally solves an information state bandit have a non-zero regret? Why or why not?
Bayes-Adaptive Bernoulli Bandits

- Start with $\text{Beta}(\alpha_a, \beta_a)$ prior over reward function R^a
- Each time a is selected, update posterior for R^a
 - $\text{Beta}(\alpha_a + 1, \beta_a)$ if $r = 0$
 - $\text{Beta}(\alpha_a, \beta_a + 1)$ if $r = 1$
- This defines transition function \tilde{P} for the Bayes-adaptive MDP
- Information state (α, β) corresponds to reward model $\text{Beta}(\alpha, \beta)$
- Each state transition corresponds to a Bayesian model update
$s^+_t = 1: \begin{bmatrix} \alpha_1^1 \beta_1^1 \alpha_2^2 \beta_2^2 \\ \alpha_1^1 \beta_1^1 \alpha_2^2 \beta_2^2 \end{bmatrix}$

$s^+_t = 1: \begin{bmatrix} \alpha_1^1 (\beta_1^1 + 1) \alpha_2^2 \beta_2^2 \\ \alpha_1^1 \beta_1^1 \alpha_2^2 \beta_2^2 \end{bmatrix}$

$s^+_t = 1: \begin{bmatrix} \alpha_1^1 \beta_1^1 \alpha_2^2 (\beta_2^2 + 1) \\ \alpha_1^1 \beta_1^1 \alpha_2^2 \beta_2^2 \end{bmatrix}$

$s^+_t = 1: \begin{bmatrix} \alpha_1^1 \beta_1^1 \alpha_2^2 \beta_2^2 \\ \alpha_1^1 \beta_1^1 \alpha_2^2 \beta_2^2 \end{bmatrix}$

$s^+_t = 1: \begin{bmatrix} \alpha_1^1 \beta_1^1 \alpha_2^2 \beta_2^2 \\ \alpha_1^1 \beta_1^1 \alpha_2^2 \beta_2^2 \end{bmatrix}$
Gittins Indices for Bernoulli Bandits

- Bayes-adaptive MDP can be solved by dynamic programming
- The solution is known as the Gittins index
- Exact solution to Bayes-adaptive MDP is typically intractable; information state space is too large
- Recent idea: apply simulation-based search (Guez et al. 2012, 2013)
 - Forward search in information state space
 - Using simulations from current information state
Table of Contents

1. Metrics for evaluating RL algorithms
2. Principles for RL Exploration
3. Probability Matching
4. Information State Search
5. MDPs
6. Principles for RL Exploration
7. Metrics for evaluating RL algorithms
Principles for Strategic Exploration

The sample principles for exploration/exploitation apply to MDPs
- Naive Exploration
- Optimistic Initialization
- Optimism in the Face of Uncertainty
- Probability Matching
- Information State Search
Initialize action-value function $Q(s,a)$ to $\frac{r_{\text{max}}}{1-\gamma}$.

Run favorite model-free RL algorithm
- Monte-Carlo control
- Sarsa
- Q-learning
- etc.

Encourages systematic exploration of states and actions.
Construct an **optimistic** model of the MDP

- Initialize transitions to go to terminal state with r_{max} reward
- Solve optimistic MDP by favorite planning algorithm
- Encourages systematic exploration of states and actions
- e.g. RMax algorithm (Brafman and Tennenholtz)
Maximize UCB on action-value function $Q^\pi(s, a)$

$$a_t = \arg \max_{a \in \mathcal{A}} Q(s_t, a) + U(s_t, a)$$

- Estimate uncertainty in policy evaluation (easy)
- Ignores uncertainty from policy improvement

Maximize UCB on optimal action-value function $Q^*(s, a)$

$$a_t = \arg \max_{a \in \mathcal{A}} Q(s_t, a) + U_1(s_t, a) + U_2(s_t, a)$$

- Estimate uncertainty in policy evaluation (easy)
- plus uncertainty from policy improvement (hard)
Bayesian Model-Based RL

- Maintain posterior distribution over MDP models
- Estimate both transition and rewards, $p[\mathcal{P}, \mathcal{R} | h_t]$, where $h_t = (s_1, a_1, r_1, \ldots, s_t)$ is the history
- Use posterior to guide exploration
 - Upper confidence bounds (Bayesian UCB)
 - Probability matching (Thompson sampling)
Thompson Sampling: Model-Based RL

- Thompson sampling implements probability matching

\[\pi(s, a | h_t) = \mathbb{P}[Q(s, a) > Q(s, a'), \forall a' \neq a | h_t] \]

\[= \mathbb{E}_{\mathcal{P}, \mathcal{R}|h_t} \left[1(a = \arg \max_{a \in \mathcal{A}} Q(s, a)) \right] \]

- Use Bayes law to compute posterior distribution \(p[\mathcal{P}, \mathcal{R} | h_t] \)

- **Sample** an MDP \(\mathcal{P}, \mathcal{R} \) from posterior

- Solve MDP using favorite planning algorithm to get \(Q^*(s, a) \)

- Select optimal action for sample MDP, \(a_t = \arg \max_{a \in \mathcal{A}} Q^*(s_t, a) \)
Information State Search in MDPs

- MDPs can be augmented to include information state
- Now the augmented state is \((s, \tilde{s})\)
 - where \(s\) is original state within MDP
 - and \(\tilde{s}\) is a statistic of the history (accumulated information)
- Each action \(a\) causes a transition
 - to a new state \(s'\) with probability \(P^a_{s,s'}\)
 - to a new information state \(\tilde{s}'\)
- Defines MDP \(\tilde{M}\) in augmented information state space
Bayes Adaptive MDP

- Posterior distribution over MDP model is an information state

\[\tilde{s}_t = \mathbb{P}[\mathcal{P}, \mathcal{R} \mid h_t] \]

- Augmented MDP over \((s, \tilde{s})\) is called **Bayes-adaptive MDP**
- Solve this MDP to find optimal exploration/exploitation trade-off (with respect to prior)
- However, Bayes-adaptive MDP is typically enormous
- Simulation-based search has proven effective (Guez et al, 2012, 2013)
Table of Contents

1. Metrics for evaluating RL algorithms
2. Principles for RL Exploration
3. Probability Matching
4. Information State Search
5. MDPs
6. Principles for RL Exploration
7. Metrics for evaluating RL algorithms
Principles

- **Naive Exploration**
 - Add noise to greedy policy (e.g. ϵ-greedy)

- **Optimistic Initialization**
 - Assume the best until proven otherwise

- **Optimism in the Face of Uncertainty**
 - Prefer actions with uncertain values

- **Probability Matching**
 - Select actions according to probability they are best

- **Information State Search**
 - Lookahead search incorporating value of information
Generalization and Strategic Exploration

- Active area of ongoing research: combine generalization & strategic exploration
- Many approaches are grounded by principles outlined here
- Some examples:
 - Optimism under uncertainty: Bellemare et al. NIPS 2016; Ostrovski et al. ICML 2017; Tang et al. NIPS 2017
 - Probability matching: Osband et al. NIPS 2016; Mandel et al. IJCAI 2016
Performance Criteria of RL Algorithms

- Empirical performance
- Convergence (to something ...)
- Asymptotic convergence to optimal policy
- Finite sample guarantees: probably approximately correct
- Regret (with respect to optimal decisions)
- Optimal decisions given information have available
- PAC uniform (Dann, Tor, Brunskill NIPS 2017): stronger criteria, directly provides both PAC and regret bounds
Define the tension of exploration and exploitation in RL and why this does not arise in supervised or unsupervised learning

Be able to define and compare different criteria for ”good” performance (empirical, convergence, asymptotic, regret, PAC)

Be able to map algorithms discussed in detail in class to the performance criteria they satisfy
Last time: Exploration and Exploitation Part I

This time: Exploration and Exploitation Part II

Next time: Batch RL