Lecture 2: Making Good Sequences of Decisions Given a Model of World

CS234: RL
Emma Brunskill
Winter 2018
Human in the loop exoskeleton work from Steve Collins’ lab
Class Structure

• Last Time:
 • Introduction
 • The components of an agent: model, value, policy

• This time:
 • Making good decisions given a Markov decision process

• Next time:
 • Policy evaluation when don’t have a model of how the world works
1 minute Quick Check

• Turn to the person next to you: what is a model, value and policy?
Models, Policies, Values

• **Model:** Mathematical models of dynamics and reward
• **Policy:** function mapping agent’s states to action
• **Value function:** future rewards from being in a state and/or action when following a particular policy
Today: Given a Model of the World

1. Markov Processes
2. Markov Reward Processes (MRPs)
3. Markov Decision Processes (MDPs)
4. Evaluation and Control in MDPs
MDPs can model a huge number of interesting problems and settings

- Bandits: single state MDP
- Optimal control mostly about continuous-state MDPs
- Partially observable MDPs = MDP where state is history
Recall: Markov Property

- Information state: sufficient statistic of history

Definition:
- State s_t is Markov if and only if (iff):
 - $p(s_{t+1} | s_t, a_t) = p(s_{t+1} | h_t, a_t)$
- Future is independent of past given present
Markov Process or Markov Chain

- Memoryless random process:
 - Sequence of random states with Markov property

- **Definition of MP:**
 - S is a (finite) set of states
 - P is dynamics / transition model, that specifies $P(s_{t+1} = s' | s_t = s)$
 - Note: no rewards, no actions
 - If finite number (N) of states, can express P as a matrix

\[
P = \begin{pmatrix}
P(s_1 | s_1) & P(s_2 | s_1) & \cdots & P(s_N | s_1) \\
P(s_1 | s_2) & P(s_2 | s_2) & \cdots \\
\vdots & \vdots & \ddots & \vdots \\
P(s_1 | s_N) & P(s_2 | s_N) & \cdots & P(s_N | s_N)
\end{pmatrix}
\]
Ex. Mars Rover Markov Chain

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Transition Probabilities:

- S1: 0.4 to S2, 0.4 to S3, 0.4 to S4, 0.4 to S5, 0.4 to S6, 0.4 to S7
- S2: 0.4 to S1
- S3: 0.4 to S4
- S4: 0.4 to S5
- S5: 0.4 to S6
- S6: 0.4 to S7
- S7: 0.4 to S1
Example: sample episodes starting from S4

- S4, S5, S6, S7, S7, S7...
- S4, S4, S5, S4, S5, S6,
- S4, S3, S2, S1, ...
Ex. Mars Rover Transition P

$P = \begin{pmatrix}
0.6 & 0.4 & 0 & 0 & 0 & 0 & 0 & 0 \\
0.4 & 0.2 & 0.4 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.4 & 0.2 & 0.4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.4 & 0.2 & 0.4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.4 & 0.2 & 0.4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.4 & 0.2 & 0.4 & 0 \\
0 & 0 & 0 & 0 & 0 & 0.4 & 0.2 & 0.4 \\
0 & 0 & 0 & 0 & 0 & 0 & 0.4 & 0.6
\end{pmatrix}$
A Markov Reward Process is a Markov Chain + rewards

Definition of MRP:

- S is a (finite) set of states
- P is dynamics / transition model, that specifies $P(s_{t+1} = s' | s_t = s)$
- R is a reward function $R(s_t = s) = \mathbb{E} [r_t | s_t = s]$
- Discount factor $\gamma \in [0,1]$
- Note: no actions
- If finite number (N) of states, can express R as a vector
Return & Value Function

• **Definition of Horizon:**
 • Number of time steps in each episode in a process
 • Can be infinite
 • Otherwise called **finite** Markov reward process

• **Definition of Return** G_t (for a Markov reward process):
 • Discounted sum of rewards from time step t to horizon
 • $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + ...$

• **Definition of State value function** $V(s)$ (for a MRP):
 • Expected return from starting in state s
 • $V(s) = \mathbb{E} [G_t | s_t = s] = \mathbb{E} [r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + ... | s_t = s]$
Discount Factor

- Mathematically convenient (avoid infinite returns and values)
- Humans often act as if there’s a discount factor < 1
 - $\gamma=0$: Only care about immediate reward
 - $\gamma=1$: Future reward is as beneficial as immediate reward
- If episode lengths are always finite, can use $\gamma=1$
Ex. Mars Rover MRP

Reward: +1 in S1, +10 in S7, 0 in all other states

Sample returns for sample 4-step episodes, $\gamma = \frac{1}{2}$
Ex. Mars Rover MRP

Reward: +1 in S1, +10 in S7, 0 in all other states
Sample returns for sample 4-step episodes, $\gamma=\frac{1}{2}$
- S4, S5, S6, S7: $0 + \frac{1}{2} \times 0 + \frac{1}{4} \times 0 + \frac{1}{8} \times 10 = 1.25$
Ex. Mars Rover MRP

Reward: +1 in S1, +10 in S7, 0 in all other states

Sample returns for sample 4-step episodes, $\gamma=\frac{1}{2}$

- S4, S5, S6, S7: $0 + \frac{1}{2} \times 0 + \frac{1}{4} \times 0 + \frac{1}{8} \times 10 = 1.25$
- S4, S4, S5, S4: $0 + \frac{1}{2} \times 0 + \frac{1}{4} \times 0 + \frac{1}{8} \times 0 = 0$
- S4, S3, S2, S1: $0 + \frac{1}{2} \times 0 + \frac{1}{4} \times 0 + \frac{1}{8} \times 1 = 0.125$
Ex. Mars Rover MRP V(S4)

Reward: +1 in S1, +10 in S7, 0 in all other states

Value for infinite-step horizon process, $\gamma = \frac{1}{2}$

- $V(S1) = 1.53$
- $V(S2) = 0.37$
- $V(S3) = 0.13$
- $V(S4) = 0.22$
- $V(S5) = 0.85$
- $V(S6) = 3.59$
- $V(S7) = 15.31$
Computing the Value of a Markov Reward Process

- Could estimate by simulation
 - Generate a large number of episodes
 - Average returns
 - Concentration inequalities bound how quickly average concentrates to expected value
Computing the Value of a Markov Reward Process

- Could estimate by simulation
- Markov property yields additional structure
- MRP value function satisfies:

\[V(s) = R(s) + \gamma \sum_{s' \in S} P(s' \mid s) V(s') \]

Immediate reward

Discounted sum of future rewards
Matrix Form of Bellman Eqn for Markov Reward Processes

- For finite state MRP can express using matrices

\[
\begin{bmatrix}
V(s_1)\\
\vdots\\
V(s_N)
\end{bmatrix} = \begin{bmatrix}
R(s_1)\\
\vdots\\
R(s_N)
\end{bmatrix} + \gamma \begin{bmatrix}
P(s_1|s_1) & \ldots & P(s_N|s_1) \\
\vdots & \ddots & \vdots \\
P(s_1|s_N) & \ldots & P(s_N|s_N)
\end{bmatrix} \begin{bmatrix}
V(s_1)\\
\vdots\\
V(s_N)
\end{bmatrix}
\]

\[V = R + \gamma PV\]
Analytic Solution for Value of MRP

- For finite state MRP can express using matrices

\[
\begin{bmatrix}
V(s_1) \\
\vdots \\
V(s_N)
\end{bmatrix}
=
\begin{bmatrix}
R(s_1) \\
\vdots \\
R(s_N)
\end{bmatrix}
+ \gamma
\begin{bmatrix}
P(s_1|s_1) & \cdots & P(s_N|s_1) \\
\vdots & \ddots & \vdots \\
P(s_1|s_N) & \cdots & P(s_N|s_N)
\end{bmatrix}
\begin{bmatrix}
V(s_1) \\
\vdots \\
V(s_N)
\end{bmatrix}
\]

\[V = R + \gamma PV\]

\[V - \gamma PV = R\]

\[(I - \gamma P)V = R\]

\[V = (I - \gamma P)^{-1} R\]
Iterative Algorithm for Computing Value of a MRP

- Dynamic programming
- Initialize $V_0(s) = 0$ for all s
- For $k=1$ until convergence
 - For all s in S:
 $$V_k(s) = R(s) + \gamma \sum_{s' \in S} P(s'|s) V_{k-1}(s')$$
- Computational complexity: $O(S^2)$ for each t
Markov Decision Process (MDP)

- A Markov Decision Process is Markov Reward Process + actions
- **Definition of MDP:**
 - S is a (finite) set of Markov states
 - A is a (finite) set of actions
 - P is dynamics / transition model for each action, that specifies $P(s_{t+1} = s' | s_t = s, a_t = a)$
 - R is a reward function $R(s_t = s, a_t = a) = E[r_t | s_t = s, a_t = a]$
 - Discount factor $\gamma \in [0,1]$
- MDP is a tuple: (S, A, P, R, γ)

Reward sometimes defined as a function of the current state, or as a function of the state-action-next state. Most frequently in this class we will assume reward is a function of state and action
Ex. Mars Rover MDP

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Okay Field Site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fantastic Field Site</td>
</tr>
<tr>
<td>R</td>
<td>R=+1</td>
<td>R=0</td>
<td>R=0</td>
<td>R=0</td>
<td>R=0</td>
<td>R=0</td>
<td>R=+10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
P(s'|s,TL) = \\
\begin{align*}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{align*}
\]

\[
P(s'|s,TR) = \\
\begin{align*}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{align*}
\]

- 2 actions: TryLeft or TryRight
 - Deterministic: Succeeds unless hit edge, then stay
MDP Policies

- Policy specifies what action to take in each state
 - Can be deterministic or stochastic
- For generality consider as a conditional distribution: given a state specifies a distribution over actions
- Policy $\pi(a|s) = P(a_t=a|s_t=s)$
• MDP + \(\pi(a|s) \) = a Markov reward process
• Precisely it is a a MRP \((S,R^{\pi},P^{\pi},\gamma)\) where

\[
R^{\pi}(s) = \sum_{a \in A} \pi(a|s)R(s,a)
\]

\[
P^{\pi}(s'|s) = \sum_{a \in A} \pi(a|s)P(s'|s,a)
\]
Policy Evaluation for MDP

- MDP + π(a|s) = a Markov reward process
- Precisely it is a a MRP (S,R^π,P^π,γ) where

\[R^\pi(s) = \sum_{a \in A} \pi(a|s)R(s,a) \]
\[P^\pi(s'|s) = \sum_{a \in A} \pi(a|s)P(s'|s,a) \]

- Implies we can use same techniques to evaluate the value of a policy for a MDP as we could to compute the value of a MRP
Slight Modification to Iterative Algorithm for Computing Value of a MRP

- Initialize $V_0(s) = 0$ for all s
- For $k=1$ until convergence
 - For all s in S:
 - $V_{k}^\pi(s) = R^\pi(s) + \gamma \sum_{s' \in S} P^\pi(s'|s)V_{k-1}^\pi(s')$
- Just replaced dynamics and reward model
Slight Modification to Iterative Algorithm for Computing Value of a MRP

• Initialize $V_0(s) = 0$ for all s
• For $k=1$ until convergence
 • For all s in S:
 \[
 V_{k}^\pi(s) = R^\pi(s) + \gamma \sum_{s' \in S} P^\pi(s'|s)V_{k-1}^\pi(s')
 \]
• Just replaced dynamics and reward model

Bellman backup for a particular policy
Policy Evaluation: Example

<table>
<thead>
<tr>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Okay Field Site +1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fantastic Field Site +10</td>
</tr>
</tbody>
</table>

- Deterministic actions of TryLeft or TryRight
- Reward: +1 in state S1, +10 in state S7, 0 otherwise
- Let $\pi_0(s) = \text{TryLeft}$ for all states (e.g. always go left)
- Set discount factor to 0. What is the value of this policy? $= R$

$$V^\pi_k(s) = R^\pi(s) + \gamma \sum_{s' \in S} P^\pi(s'|s)V^\pi_{k-1}(s')$$
MDP Control

• Compute the optimal policy
 \[\pi^*(s) = \arg \max_{\pi} V^\pi(s) \]

• There exists a unique optimal value function
• Optimal policy for a MDP in an infinite horizon problem (agent acts forever) is:
 • Deterministic
Short Exercise: How Many Deterministic Policies?

- 7 discrete states (location of rover)
- 2 actions: TryLeft or TryRight

Is the optimal policy unique?
MDP Control

• Compute the optimal policy

\[\pi^*(s) = \arg \max_\pi V^\pi (s) \]

• There exists a unique optimal value function
• Optimal policy for a MDP in an infinite horizon problem (agent acts forever) is:
 • Deterministic
 • Stationary (does not depend on time step)
 • Unique? Not necessarily, may be ties
Policy Search

• One option is searching to compute best policy
• Number of deterministic policies is $|A|^{|S|}$
• Policy iteration is generally more efficient than enumeration
New Definition: State-Action Value Q

- State-action value of a policy

$$Q^\pi(s, a) = R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a)V^\pi(s')$$

- Take action a, then follow policy
Policy Iteration (PI)

1. i=0; Initialize $\pi_0(s)$ randomly for all states s

2. While i == 0 or $|\pi_i - \pi_{i-1}| > 0$
 - Policy evaluation of π_i
 - i=i+1
 - Policy improvement

Use a L1 norm: measures if the policy changed for any state
Policy Improvement

Compute state-action value of a policy π_i

$$Q^{\pi_i}(s, a) = R(s, a) + \gamma \sum_{s' \in S} P(s' | s, a)V^{\pi_i}(s')$$

Note

$$\max_a Q^{\pi_i}(s, a) = \max_a R(s, a) + \gamma \sum_{s' \in S} P(s' | s, a)V^{\pi_i}(s')$$

$$\geq R(s, \pi_i(s)) + \gamma \sum_{s' \in S} P(s' | s, \pi_i(s))V^{\pi_i}(s')$$

$$= V^{\pi_i}(s)$$

Define new policy

$$\pi_{i+1}(s) = \arg \max_a Q^{\pi_i}(s, a) \ \forall s \in S$$
Policy Iteration (PI)

1. i=0; Initialize $\pi_0(s)$ randomly for all states s

2. While $i == 0$ or $|\pi_i - \pi_{i-1}| > 0$
 - Policy evaluation: Compute value of π_i
 - $i=i+1$
 - Policy improvement:

 $$Q^{\pi_i}(s,a) = r(s,a) + \gamma \sum_{s' \in S} p(s'|s,a) V^{\pi_i}(s')$$

 $$\pi_{i+1}(s) = \arg \max_a Q^{\pi_i}(s,a)$$

Use a L1 norm: measures if the policy changed for any state
Delving Deeper Into Improvement

\[Q^{\pi_i}(s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V^{\pi_i}(s') \]

\[\max_a Q^{\pi_i}(s, a) \geq V^{\pi_i}(s) \]

\[\pi_{i+1}(s) = \arg \max_a Q^{\pi_i}(s, a) \]

- So if take \(\pi_{i+1}(s) \) then followed \(\pi_i \) forever,
 - expected sum of rewards would be at least as good as if we had always followed \(\pi_i \)
- But new proposed policy is to always follow \(\pi_{i+1} \) …
Monotonic Improvement in Policy

• Definition

\[V^{\pi_1} \geq V^{\pi_2} \rightarrow V^{\pi_1}(s) \geq V^{\pi_2}(s) \ \forall s \in S \]

• Proposition: \(V^{\pi'} \geq V^{\pi} \) with strict inequality if \(\pi \) is suboptimal (where \(\pi' \) is the new policy we get from doing policy improvement)
Proof

\[
V^{\pi_i}(s) \leq \max_a Q^{\pi_i}(s, a) \\
= \max_a R(s, a) + \gamma \sum_{s' \in S} P(s' | s, a) V^{\pi_i}(s') \\
= R(s, \pi_{i+1}(s)) + \gamma \sum_{s' \in S} P(s' | s, \pi_{i+1}(s)) V^{\pi_i}(s') \quad \text{// uses definition of } \pi_{i+1} \\
\leq R(s, \pi_{i+1}(s)) + \gamma \sum_{s' \in S} P(s' | s, \pi_{i+1}(s)) \left(\max_{a'} Q^{\pi_i}(s', a') \right) \\
= R(s, \pi_{i+1}(s)) + \gamma \sum_{s' \in S} P(s' | s, \pi_{i+1}(s)) \left(R(s', \pi_{i+1}(s') + \gamma \sum_{s'' \in S} P(s'' | s', \pi_{i+1}(s')) V^{\pi_i}(s'') \right) \\
\ldots \\
= V^{\pi_{i+1}}(s)
\]
If Policy Doesn’t Change ($\pi_{i+1}(s) = \pi_i(s)$ for all s)
Can It Ever Change Again in More Iterations?

- Recall policy improvement step

\[
Q^{\pi_i}(s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V^{\pi_i}(s')
\]

\[
\pi_{i+1}(s) = \arg\max_a Q^{\pi_i}(s, a)
\]

- Assuming can do Q computation and policy update exactly, no change to Q and policy
Policy Iteration (PI)

1. \(i=0; \text{ Initialize } \pi_0(s) \text{ randomly for all states } s\)

2. While \(i == 0 \text{ or } |\pi_i - \pi_{i-1}| > 0\)
 - Policy evaluation: Compute value of \(\pi_i\)
 - \(i=i+1\)
 - Policy improvement:

\[
Q^\pi_i(s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V^\pi_i(s')
\]

\[
\pi_{i+1}(s) = \arg \max_a Q^{\pi_i}(s, a)
\]
Policy Iteration Can Take At Most $|A|^{|S|}$ Iterations* (Size of # Policies)

1. $i=0$; Initialize $\pi_0(s)$ randomly for all states s
2. Converged = 0;
3. While $i == 0$ or $|\pi_i - \pi_{i-1}| > 0$
 • $i=i+1$
 • Policy **evaluation**: Compute V^π
 • Policy **improvement**:

 $Q^{\pi_i}(s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V^{\pi_i}(s')$

 $\pi_{i+1}(s) = \arg \max_a Q^{\pi_i}(s, a)$

* For finite state and action spaces
MDP: Computing Optimal Policy and Optimal Value

- Policy iteration computes optimal value and policy
- Value iteration is another technique
 - Idea: Maintain optimal value of starting in a state if have a finite number of steps left in the episode
 - Iterate to consider longer and longer episodes
Bellman Equation and Bellman Backup Operators

- Bellman equation
 - The value function for a policy must satisfy
 \[V^\pi(s) = R^\pi(s) + \gamma \sum_{s' \in S} P^\pi(s'|s)V^\pi(s') \]

- Bellman backup operator
 - Applied to a value function
 - Returns a new value function
 - Improves the value if possible
 \[BV(s) = \max_a R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V(s') \]
 - \(BV \) yields a value function over all \(s \)
Value Iteration (VI)

1. Initialize $V_0(s) = 0$ for all states s
2. Set $k = 1$
3. Loop until [finite horizon, convergence]
 • For each state s
 \[
 V_{k+1}(s) = \max_a R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a)V_k(s')
 \]
 • View as Bellman backup on value function
 \[
 V_{k+1} = BV_k
 \]
 \[
 \pi_{k+1}(s) = \arg \max_a R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a)V_k(s')
 \]
Looking at Policy Iteration As Bellman Operations:
Policy Evaluation: Compute Fixed Point of B^π

• Bellman backup operator for a particular policy

\[B^\pi V(s) = R^\pi(s) + \gamma \sum_{s' \in S} P^\pi(s'|s)V(s) \]

• To do policy evaluation, repeatedly apply operator until V stops changing

\[V^\pi = B^\pi B^\pi \ldots B^\pi V \]
Looking at Policy Iteration As Bellman Operations: Policy Improvement, Slight Variant of Bellman

• Bellman backup operator for a particular policy

\[B^\pi V(s) = R^\pi(s) + \gamma \sum_{s' \in S} P^\pi(s'|s)V(s) \]

• To do policy improvement

\[\pi_{k+1}(s) = \arg \max_a R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a)V^{\pi_k}(s') \]
Going Back to Value Iteration (VI)

1. Initialize $V_0(s) = 0$ for all states s
2. Set $k = 1$
3. Loop until [finite horizon, convergence]
 - For each state s
 \[
 V_{k+1}(s) = \max_a R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a)V_k(s')
 \]
 - Doing a Bellman backup on value function
 \[
 V_{k+1} = BV_k
 \]
 \[
 \pi_{k+1}(s) = \arg \max_a R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a)V_k(s')
 \]
Contraction Operator

• Let O be an operator
• If \(|OV - OV'| \leq |V - V'|\)
• Then O is a contraction operator
Will Value Iteration Converge?

- Yes, if discount factor $\gamma < 1$ or end up in a terminal state with probability 1
- Bellman backup is a contraction if discount factor, $\gamma < 1$
- If apply it to two different value functions, distance between value functions shrinks after apply Bellman equation to each
Bellman Backup is a Contraction on $V (\gamma < 1)$

$$||V - V'|| = \text{Infinity norm (find max difference over all states, e.g. } \max(s) |V(s) - V'(s)|$$

$$||BV_k - BV_j|| = \left\| \left(\max_a R(s, a) + \gamma \sum_{s'} P(s'|s, a)V_k(s') \right) - \left(\max_{a'} R(s, a') + \gamma \sum_{s'} P(s'|s, a')V_j(s') \right) \right\|$$

$$\leq \left\| \max_a R(s, a) + \gamma \sum_{s'} P(s'|s, a)V_k(s') - R(s, a) - \gamma \sum_{s'} P(s'|s, a)V_j(s') \right\|$$

$$= \left\| \max_a \gamma \sum_{s'} P(s'|s, a)(V_k(s') - V_j(s')) \right\|$$

$$\leq \left\| \max_a \gamma \sum_{s'} P(s'|s, a)||V_k - V_j|| \right\|$$

$$\leq \gamma \max_a \sum_{s'} P(s'|s, a)||V_k - V_j||$$

$$= \gamma ||V_k - V_j||$$

Note: even if all inequalities are equalities, this still is a contraction as long as the discount factor is < 1
Check Understanding

• Prove value iteration converges to a unique solution for discrete state and action space and $\gamma < 1$
• Does the initialization of values in value iteration impact anything?
Consider Value Iteration for Finite Horizon:

- V_k = optimal value if making k more decisions
- π_k = optimal policy if making k more decisions

1. Initialize $V_0(s) = 0$ for all states s
2. Set $k = 1$
3. Loop until [finite horizon, convergence]
 - For each state s
 \[
 V_{k+1}(s) = \max_a R(s, a) + \gamma \sum_{s' \in S} P(s' | s, a) V_k(s')
 \]
 - Doing a Bellman backup on value function
 \[
 V_{k+1} = BV_k
 \]
 \[
 \pi_{k+1}(s) = \arg \max_a R(s, a) + \gamma \sum_{s' \in S} P(s' | s, a) V_k(s')
 \]
Consider Value Iteration for Finite Horizon:
Is optimal policy stationary (independent of time step)? In general, no

1. Initialize $V_0(s)=0$ for all states s
2. Set $k=1$
3. Loop until [finite horizon, convergence]
 - For each state s
 \[V_{k+1}(s) = \max_a R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a)V_k(s') \]
 - Doing a Bellman backup on value function
 \[V_{k+1} = BV_k \]
 \[\pi_{k+1}(s) = \arg \max_a R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a)V_k(s') \]
Value vs Policy Iteration

• Value iteration:
 • Compute optimal value if horizon=k
 • Note this can be used to compute optimal policy if horizon = k
 • Increment k

• Policy iteration:
 • Compute infinite horizon value of a policy
 • Use to select another (better) policy
 • Closely related to a very popular method in RL: policy gradient
What You Should Know

- Define MP, MRP, MDP, Bellman operator, contraction, model, Q-value, policy
- Be able to implement
 - Value iteration & policy iteration
- Contrast benefits and weaknesses of policy evaluation approaches
- Be able to prove contraction properties
- Limitations of presented approaches and Markov assumptions
 - Which policy evaluation methods require Markov assumption?