Lecture 8: Policy Gradient I

Emma Brunskill

CS234 Reinforcement Learning.

Winter 2018

Additional reading: Sutton and Barto 2018 Chp. 13
Class Feedback

- Thanks to those that participated!
- Of 70 responses, 54% thought too fast, 43% just right
Thanks to 4 those that participated!

Of 70 responses, 54% thought too fast, 43% just right

Multiple requests to: repeat questions for those watching later on; have more worked examples; have more conceptual emphasis; minimize notation errors
Class Feedback

- Thanks to 4 those that participated!
- Of 70 responses, 54% thought too fast, 43% just right
- Multiple request to: repeat questions for those watching later on; have more worked examples; have more conceptual emphasis; minimize notation errors
- Common things people find are helping them learn: assignments, mathematical derivations, checking your understanding/talking to a neighbor
Last time: Policy Search

This time: Policy Search

Next time: Midterm review
Recall: Policy-Based RL

- Policy search: directly parametrize the policy

\[\pi_\theta(s, a) = \mathbb{P}[a|s, \theta] \]

- Goal is to find a policy \(\pi \) with the highest value function \(V^\pi \)

- (Pure) Policy based methods
 - No Value Function
 - Learnt Policy

- Actor-Critic methods
 - Learnt Value Function
 - Learnt Policy
Recall: Advantages of Policy-Based RL

Advantages:
- Better convergence properties
- Effective in high-dimensional or continuous action spaces
- Can learn stochastic policies

Disadvantages:
- Typically converge to a local rather than global optimum
- Evaluating a policy is typically inefficient and high variance
Recall: Policy Gradient

- Defined $V(\theta) = V^{\pi_\theta}$ to make explicit the dependence of the value on the policy parameters.

- Assumed episodic MDPs.

- Policy gradient algorithms search for a local maximum in $V(\theta)$ by ascending the gradient of the policy, w.r.t parameters θ.

\[
\nabla \theta = \alpha \nabla_\theta V(\theta)
\]

- Where $\nabla_\theta V(\theta)$ is the policy gradient:

\[
\nabla_\theta V(\theta) = \left(\frac{\delta V(\theta)}{\delta \theta_1}, \ldots, \frac{\delta V(\theta)}{\delta \theta_n}\right)
\]

- and α is a step-size parameter.
Goal: Converge as quickly as possible to a local optima
- Incurring reward / cost as execute policy, so want to minimize number of iterations / time steps until reach a good policy
Goal: Converge as quickly as possible to a local optima
 - Incurring reward / cost as execute policy, so want to minimize number of iterations / time steps until reach a good policy

During policy search alternating between evaluating policy and changing (improving) policy (just like in policy iteration)

Would like each policy update to be a monotonic improvement
 - Only guaranteed to reach a local optima with gradient descent
 - Monotonic improvement will achieve this
 - And in the real world, monotonic improvement is often beneficial
Goal: Obtain large monotonic improvements to policy at each update

Techniques to try to achieve this:

- Last time and today: Get a better estimate of the gradient (intuition: should improve updating policy parameters)
- Today: Change how to update the policy parameters given the gradient
<table>
<thead>
<tr>
<th></th>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Better Gradient Estimates</td>
</tr>
<tr>
<td>2</td>
<td>Policy Gradient Algorithms and blueucing Variance</td>
</tr>
<tr>
<td>3</td>
<td>Updating the Parameters Given the Gradient: Motivation</td>
</tr>
<tr>
<td>4</td>
<td>Need for Automatic Step Size Tuning</td>
</tr>
<tr>
<td>5</td>
<td>Updating the Parameters Given the Gradient: Local Approximation</td>
</tr>
<tr>
<td>6</td>
<td>Updating the Parameters Given the Gradient: Trust Regions</td>
</tr>
<tr>
<td>7</td>
<td>Updating the Parameters Given the Gradient: TRPO Algorithm</td>
</tr>
</tbody>
</table>
Recall last time:

\[\nabla_\theta V(\theta) \approx \frac{1}{m} \sum_{i=1}^{m} R(\tau^{(i)}) \sum_{t=0}^{T-1} \nabla_\theta \log \pi_\theta(a_t^{(i)}|s_t^{(i)}) \]

Unbiased estimate of gradient but very noisy

Fixes that can make it practical

- Temporal structure (discussed last time)
- Baseline
- Alternatives to using Monte Carlo returns \(R \ast \tau^{(i)} \) as targets
Policy Gradient: Introduce Baseline

- blueuce variance by introducing a baseline $b(s)$

$$\nabla_\theta \mathbb{E}_\tau [R] = \mathbb{E}_\tau \left[\sum_{t=0}^{T-1} \nabla_\theta \log \pi(a_t|s_t, \theta) \left(\sum_{t'={t}}^{T-1} r_{t'} - b(s_t) \right) \right]$$

- For any choice of b, gradient estimator is unbiased.
- Near optimal choice is expected return,
 $$b(s_t) \approx \mathbb{E}[r_t + r_{t+1} + \cdots + r_{T-1}]$$
- Interpretation: increase logprob of action a_t proportionally to how much returns $\sum_{t'=t}^{T-1} r_{t'}$ are better than expected
Baseline \(b(s) \) Does Not Introduce Bias–Derivation

\[
\mathbb{E}_\tau [\nabla_\theta \log \pi(a_t|s_t, \theta) b(s_t)] \\
= \mathbb{E}_{s_0:t, a_0:(t-1)} \left[\mathbb{E}_{s(t+1):T, a_t:(T-1)} [\nabla_\theta \log \pi(a_t|s_t, \theta) b(s_t)] \right]
\]
Baseline $b(s)$ Does Not Introduce Bias—Derivation

\[
E_{\tau} [\nabla_{\theta} \log \pi(a_t | s_t, \theta) b(s_t)] \\
= E_{s_0:t, a_0: (t-1)} \left[E_{s(t+1):T, a_t: (T-1)} [\nabla_{\theta} \log \pi(a_t | s_t, \theta) b(s_t)] \right] \text{ (break up expectation)} \\
= E_{s_0:t, a_0: (t-1)} [b(s_t) E_{s(t+1):T, a_t: (T-1)} [\nabla_{\theta} \log \pi(a_t | s_t, \theta)]] \text{ (pull baseline term out)} \\
= E_{s_0:t, a_0: (t-1)} [b(s_t) E_{a_t} [\nabla_{\theta} \log \pi(a_t | s_t, \theta)]] \text{ (remove irrelevant variables)} \\
= E_{s_0:t, a_0: (t-1)} \left[b(s_t) \sum_a \pi_{\theta}(a_t | s_t) \nabla_{\theta} \pi(a_t | s_t, \theta) / \pi_{\theta}(a_t | s_t) \right] \text{ (likelihood ratio)} \\
= E_{s_0:t, a_0: (t-1)} \left[b(s_t) \sum_a \nabla_{\theta} \pi(a_t | s_t, \theta) \right] \\
= E_{s_0:t, a_0: (t-1)} \left[b(s_t) \nabla_{\theta} \sum_a \pi(a_t | s_t, \theta) \right] \\
= E_{s_0:t, a_0: (t-1)} [b(s_t) \nabla_{\theta} 1] \\
= E_{s_0:t, a_0: (t-1)} [b(s_t) \cdot 0] = 0
\]
"Vanilla" Policy Gradient Algorithm

Initialize policy parameter θ, baseline b

for iteration = 1, 2, \cdots do

Collect a set of trajectories by executing the current policy

At each timestep in each trajectory, compute

the return $R_t = \sum_{t'=t}^{T-1} r_{t'}$, and

the advantage estimate $\hat{A}_t = R_t - b(s_t)$.

Re-fit the baseline, by minimizing $||b(s_t) - R_t||^2$, summed over all trajectories and timesteps.

Update the policy, using a policy gradient estimate \hat{g}, which is a sum of terms $\nabla_\theta \log \pi(a_t|s_t, \theta) \hat{A}_t$.

(Plug \hat{g} into SGD or ADAM)

endfor
Practical Implementation with Autodiff

- Usual formula $\sum_t \nabla_\theta \log \pi(a_t|s_t; \theta) \hat{A}_t$ is inefficient—want to batch data
- Define ”surrogate” function using data from current batch

$$L(\theta) = \sum_t \log \pi(a_t|s_t; \theta) \hat{A}_t$$

- Then policy gradient estimator $\hat{g} = \nabla_\theta L(\theta)$
- Can also include value function fit error

$$L(\theta) = \sum_t \left(\log \pi(z_t|s_t; \theta) \hat{A}_t - \| V(s_t) - \hat{R}_t \|^2 \right)$$
Initialize policy parameter θ, baseline b

for iteration $= 1, 2, \cdots$ do

Collect a set of trajectories by executing the current policy

At each timestep in each trajectory, compute

the return $R_t = \sum_{t'=t}^{T-1} r_{t'}$, and

the advantage estimate $\hat{A}_t = R_t - b(s_t)$.

Re-fit the baseline, by minimizing $||b(s_t) - R_t||^2$, summed over all trajectories and timesteps.

Update the policy, using a policy gradient estimate \hat{g}, which is a sum of terms $\nabla_\theta \log \pi(a_t|s_t, \theta) \hat{A}_t$.

(Plug \hat{g} into SGD or ADAM)

endfor
Choosing the Baseline: Value Functions

- Recall Q-function / state-action-value function:

\[Q^{\pi,\gamma}(s, a) = \mathbb{E}_\pi \left[r_0 + \gamma r_1 + \gamma^2 r_2 \cdots | s_0 = s, a_0 = a \right] \]

- State-value function can serve as a great baseline

\[V^{\pi,\gamma}(s) = \mathbb{E}_\pi \left[r_0 + \gamma r_1 + \gamma^2 r_2 \cdots | s_0 = s \right] = \mathbb{E}_{a \sim \pi}[Q^{\pi,\gamma}(s, a)] \]

- Advantage function: Combining Q with baseline V

\[A^{\pi,\gamma}(s, a) = Q^{\pi,\gamma}(s, a) - V^{\pi,\gamma}(s) \]
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Better Gradient Estimates</td>
</tr>
<tr>
<td>2</td>
<td>Policy Gradient Algorithms and reducing Variance</td>
</tr>
<tr>
<td>3</td>
<td>Updating the Parameters Given the Gradient: Motivation</td>
</tr>
<tr>
<td>4</td>
<td>Need for Automatic Step Size Tuning</td>
</tr>
<tr>
<td>5</td>
<td>Updating the Parameters Given the Gradient: Local Approximation</td>
</tr>
<tr>
<td>6</td>
<td>Updating the Parameters Given the Gradient: Trust Regions</td>
</tr>
<tr>
<td>7</td>
<td>Updating the Parameters Given the Gradient: TRPO Algorithm</td>
</tr>
</tbody>
</table>
Recall last time:

$$\nabla_{\theta} V(\theta) \approx \frac{1}{m} \sum_{i=1}^{m} R(\tau^{(i)}) \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t^{(i)}|s_t^{(i)})$$

Unbiased estimate of gradient but very noisy

Fixes that can make it practical

- Temporal structure (discussed last time)
- Baseline
- **Alternatives to using Monte Carlo returns** $R^{*} \tau^{(i)}$ as targets
Choosing the Target

- $R(\tau^{(i)})$ is an estimation of the value function from a single roll out
- Unbiased but high variance
- Blueuce variance by introducing bias using bootstrapping and function approximation (just like in we saw for TD vs MC, and in the value function approximation lectures)
- Estimate of V/Q is done by a critic
- Actor-critic methods maintain an explicit representation of both the policy and the value function, and update both
- A3C is very popular an actor-critic method
Policy Gradient Formulas with Value Functions

- Recall:

\[
\nabla_\theta \mathbb{E}_\tau [R] = \mathbb{E}_\tau \left[\sum_{t=0}^{T-1} \nabla_\theta \log \pi(a_t|s_t, \theta) \left(\sum_{t'=t}^{T-1} r_{t'} - b(s_t) \right) \right]
\]

\[
\nabla_\theta \mathbb{E}_\tau [R] \approx \mathbb{E}_\tau \left[\sum_{t=0}^{T-1} \nabla_\theta \log \pi(a_t|s_t, \theta) \left(Q(s_t, w) - b(s_t) \right) \right]
\]

- Letting the baseline be an estimate of the value \(V \), we can represent the gradient in terms of the state-action advantage function

\[
\nabla_\theta \mathbb{E}_\tau [R] = \mathbb{E}_\tau \left[\sum_{t=0}^{T-1} \nabla_\theta \log \pi(a_t|s_t, \theta) \hat{A}^\pi(s_t, a_t) \right]
\]

Emma Brunskill (CS234 Reinforcement Learning)
Lecture 8: Policy Gradient I
Winter 2018
Choosing the Target: N-step estimators

\[
\nabla_\theta V(\theta) \approx \frac{1}{m} \sum_{i=1}^{m} R(\tau^{(i)}) \sum_{t=0}^{T-1} \nabla_\theta \log \pi_\theta(a_t^{(i)}|s_t^{(i)})
\]

Note that critic can select any blend between TD and MC estimators for the target to substitute for the true state-action value function.

\[
\hat{R}_t^{(1)} = r_t + \gamma V(s_{t+1})
\]

\[
\hat{R}_t^{(2)} = r_t + \gamma r_{t+1} + \gamma^2 V(s_{t+2})
\]

\[
\hat{R}_t^{(inf)} = r_t + \gamma r_{t+1} + \gamma^2 r_{t+1} + \cdots
\]

If subtract baselines from the above, get advantage estimators

\[
\hat{A}_t^{(1)} = r_t + \gamma V(s_{t+1}) - V(s_t)
\]

\[
\hat{A}_t^{(inf)} = r_t + \gamma r_{t+1} + \gamma^2 r_{t+1} + \cdots - V(s_t)
\]

\(\hat{A}_t^{(a)}\) has low variance & high bias. \(\hat{A}_t^{(\infty)}\) high variance but low bias.
1. Better Gradient Estimates
2. Policy Gradient Algorithms and reducing Variance
3. Updating the Parameters Given the Gradient: Motivation
4. Need for Automatic Step Size Tuning
5. Updating the Parameters Given the Gradient: Local Approximation
6. Updating the Parameters Given the Gradient: Trust Regions
7. Updating the Parameters Given the Gradient: TRPO Algorithm
Updating the Policy Parameters Given the Gradient

Initialize policy parameter θ, baseline b

for iteration=1, 2, ... do

 Collect a set of trajectories by executing the current policy
 At each timestep in each trajectory, compute
 the return $R_t = \sum_{t' = t}^{T-1} r_{t'}$, and
 the advantage estimate $\hat{A}_t = R_t - b(s_t)$.
 Re-fit the baseline, by minimizing $||b(s_t) - R_t||^2$, summed over all trajectories and timesteps.
 Update the policy, using a policy gradient estimate \hat{g}, which is a sum of terms $\nabla_\theta \log \pi(a_t | s_t, \theta) \hat{A}_t$.
 (Plug \hat{g} into SGD or ADAM)

endfor
Table of Contents

1. Better Gradient Estimates
2. Policy Gradient Algorithms and reducing Variance
3. Updating the Parameters Given the Gradient: Motivation
4. Need for Automatic Step Size Tuning
5. Updating the Parameters Given the Gradient: Local Approximation
6. Updating the Parameters Given the Gradient: Trust Regions
7. Updating the Parameters Given the Gradient: TRPO Algorithm
Goal: Each step of policy gradient yields an updated policy π' whose value is greater than or equal to the prior policy π: $V^{\pi'} \geq V^\pi$

Gradient descent approaches update the weights a small step in direction of gradient

First order / linear approximation of the value function’s dependence on the policy parameterization

Locally a good approximation, further away less good
Why are step sizes a big deal in RL?

- Step size is important in any problem involving finding the optima of a function.
- Supervised learning: Step too far \rightarrow next updates will fix it.
- Reinforcement learning:
 - Step too far \rightarrow bad policy
 - Next batch: collected under bad policy
 - **Policy is determining data collect!** Essentially controlling exploration and exploitation trade off due to particular policy parameters and the stochasticity of the policy.
 - May not be able to recover from a bad choice, collapse in performance!
- Simple step-sizing: Line search in direction of gradient
 - Simple but expensive (perform evaluations along the line)
 - Naive: ignores where the first order approximation is good or bad
Can we automatically ensure the updated policy π' whose value is greater than or equal to the prior policy π: $V^{\pi'} \geq V^\pi$?

Consider this for the policy gradient setting, and hope to address this by modifying step size.
Objective Function

- Goal: find policy parameters that maximize value function

\[V(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t); \pi_{\theta} \right] \]

(1)

- where \(s_0 \sim \mu(s_0), a_t \sim \pi(a_t|s_t), s_{t+1} \sim P(s_{t+1}|s_t, a_t) \)
- Have access to samples from the current policy \(\pi \) (param. by \(\theta \))
- Want to predict the value of a different policy (off policy learning!)

\[35\] For today we will primarily consider discounted value functions.
Objective Function

- Goal: find policy parameters that maximize value function \(V(\theta) \)

\[
V(\theta) = \mathbb{E}_{\pi_\theta} \left[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t); \pi_\theta \right]
\]

where \(s_0 \sim \mu(s_0), a_t \sim \pi(a_t|s_t), s_{t+1} \sim P(s_{t+1}|s_t, a_t) \)

- Express expected return of another policy in terms of the advantage over the original policy

\[
V(\tilde{\theta}) = V(\theta) + \mathbb{E}_{\pi_{\tilde{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^t A_\pi(s_t, a_t) \right] = V(\theta) + \sum_s \rho_{\tilde{\pi}}(s) \sum_a \tilde{\pi}(a|s)A_\pi(s, a)
\]

where \(\rho_{\tilde{\pi}}(s) \) is defined as the discounted weighted frequency of state \(s \) under policy \(\tilde{\pi} \) (similar to in Imitation Learning lecture)

- We know the advantage \(A_\pi \) and \(\tilde{\pi} \)
- But we can’t compute the above because we don’t know \(\rho_{\tilde{\pi}} \), the state distribution under the new proposed policy

\[37\] For today we will primarily consider discounted value functions
Table of Contents

1. Better Gradient Estimates
2. Policy Gradient Algorithms and reducing Variance
3. Updating the Parameters Given the Gradient: Motivation
4. Need for Automatic Step Size Tuning
5. Updating the Parameters Given the Gradient: Local Approximation
6. Updating the Parameters Given the Gradient: Trust Regions
7. Updating the Parameters Given the Gradient: TRPO Algorithm
Can we remove the dependency on the discounted visitation frequencies under the new policy?

Substitute in the discounted visitation frequencies under the current policy to define a new objective function:

$$L_\pi(\tilde{\pi}) = V(\theta) + \sum_s \rho_\pi(s) \sum_a \tilde{\pi}(a|s)A_\pi(s, a)$$ \hspace{1cm} (4)

Note that $L_{\pi_{\theta_0}}(\pi_{\theta_0}) = V(\theta_0)$

Gradient of L is identical to gradient of value function at policy parameterized evaluated at θ_0: $\nabla_\theta L_{\pi_{\theta_0}}(\pi_\theta)|_{\theta=\theta_0} = \nabla_\theta V(\theta)|_{\theta=\theta_0}$
Is there a bound on the performance of a new policy obtained by optimizing the surrogate objective?

Consider mixture policies that blend between an old policy and a different policy

$$\pi_{new}(a|s) = (1 - \alpha)\pi_{old}(a|s) + \alpha\pi'(a|s)$$

In this case can guarantee a lower bound on value of the new π_{new}:

$$V^{\pi_{new}} \geq L_{\pi_{old}}(\pi_{new}) - \frac{2\epsilon\gamma}{(1 - \gamma)^2}\alpha^2$$

where $\epsilon = \max_s \left| \mathbb{E}_{a \sim \pi'(a|s)} [A_{\pi}(s, a)] \right|

Check your understanding: is this bound tight if $\pi_{new} = \pi_{old}$? Can we remove the dependency on the discounted visitation frequencies under the new policy?
Find the Lower-Bound in General Stochastic Policies

- Would like to similarly obtain a lower bound on the potential performance for general stochastic policies (not just mixture policies)
- Recall $L_\pi(\tilde{\pi}) = V(\theta) + \sum_s \rho_\pi(s) \sum_a \tilde{\pi}(a|s)A_\pi(s, a)$

Theorem

Let $D_{TV}^{\max}(\pi_1, \pi_2) = \max_s D_{TV}(\pi_1(\cdot|s), \pi_2(\cdot|s))$. Then

$$V^{\pi_{new}} \geq L^{\pi_{old}}(\pi_{new}) - \frac{4\epsilon\gamma}{(1 - \gamma)^2} (D_{TV}^{\max}(\pi_1, \pi_2))^2$$

where $\epsilon = \max_{s,a} |A_\pi(s, a)|$.

- Note that $D_{TV}(p, q)^2 \leq D_{KL}(p, q)$ for prob. distrib p and q.
- Then the above theorem immediately implies that

$$V^{\pi_{new}} \geq L^{\pi_{old}}(\pi_{new}) - \frac{4\epsilon\gamma}{(1 - \gamma)^2} D_{KL}^{\max}(\pi_{old}, \pi_{new})$$

where $D_{KL}^{\max}(\pi_1, \pi_2) = \max_s D_{KL}(\pi_1(\cdot|s), \pi_2(\cdot|s))$
Guaranteed Improvement

- Goal is to compute a policy that maximizes the objective function defining the lower bound:

\[
M_i(\pi) = L_{\pi_i}(\pi) - \frac{4\epsilon \gamma}{(1 - \gamma)^2} D_{KL}^{\text{max}}(\pi_i, \pi)
\]

\[
V^{\pi_{i+1}} \geq L_{\pi_i}(\pi) - \frac{4\epsilon \gamma}{(1 - \gamma)^2} D_{KL}^{\text{max}}(\pi_i, \pi) = M_i(\pi_{i+1})
\]

\[
V^{\pi_i} = M_i(\pi_i)
\]

\[
V^{\pi_{i+1}} - V^{\pi_i} \geq M_i(\pi_{i+1}) - M_i(\pi_i)
\]

- So as long as the new policy \(\pi_{i+1}\) is equal or an improvement comparable to the old policy \(\pi_i\) with respect to the lower bound, we are guaranteed to monotonically improve!

- The above is a type of Minorization-maximization (MM) algorithm

\[L_\pi(\tilde{\pi}) = V(\theta) + \sum_s \rho_\pi(s) \sum_a \tilde{\pi}(a|s) A_\pi(s, a) \]
\[V^{\pi_{\text{new}}} \geq L_{\pi_{\text{old}}} (\pi_{\text{new}}) - \frac{4\epsilon \gamma}{(1 - \gamma)^2} D_{KL}^{\max} (\pi_{\text{old}}, \pi_{\text{new}}) \]

\[45L_{\pi} (\tilde{\pi}) = V(\theta) + \sum_{s} \rho_{\pi}(s) \sum_{a} \tilde{\pi}(a|s) A_{\pi}(s, a) \]
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Better Gradient Estimates</td>
</tr>
<tr>
<td>2</td>
<td>Policy Gradient Algorithms and reducing Variance</td>
</tr>
<tr>
<td>3</td>
<td>Updating the Parameters Given the Gradient: Motivation</td>
</tr>
<tr>
<td>4</td>
<td>Need for Automatic Step Size Tuning</td>
</tr>
<tr>
<td>5</td>
<td>Updating the Parameters Given the Gradient: Local Approximation</td>
</tr>
<tr>
<td>6</td>
<td>Updating the Parameters Given the Gradient: Trust Regions</td>
</tr>
<tr>
<td>7</td>
<td>Updating the Parameters Given the Gradient: TRPO Algorithm</td>
</tr>
</tbody>
</table>
Optimization of Parameterized Policies

Goal is to optimize

$$\max_\theta L_{\theta_{old}}(\theta_{new}) - \frac{4\epsilon \gamma}{(1 - \gamma)^2} D_{KL}^{\max}(\theta_{old}, \theta_{new}) = L_{\theta_{old}}(\theta_{new}) - CD_{KL}^{\max}(\theta_{old}, \theta_{new})$$

where C is the penalty coefficient.

In practice, if we used the penalty coefficient recommended by the theory above $C = \frac{4\epsilon \gamma}{(1 - \gamma)^2}$, the step sizes would be very small.

New idea: Use a trust region constraint on step sizes. Do this by imposing a constraint on the KL divergence between the new and old policy.

$$\max_\theta L_{\theta_{old}}(\theta)$$

subject to $D_{KL}^{s \sim \rho_{\theta_{old}}}(\theta_{old}, \theta) \leq \delta$ (12)

This uses the average KL instead of the max (the max requires the KL is bounded at all states and yields an impractical number of constraints).
Prior objective:

$$\max_{\theta} L_{\theta_{\text{old}}} (\theta)$$

subject to

$$D_{KL}^{s \sim \rho_{\theta_{\text{old}}}}(\theta_{\text{old}}, \theta) \leq \delta$$

where

$$L_{\pi}(\tilde{\pi}) = V(\theta) + \sum_{s} \rho_{\pi}(s) \sum_{a} \tilde{\pi}(a|s) A_{\pi}(s, a)$$

Don’t know the visitation weights nor true advantage function

Instead do the following substitutions:

$$\sum_{s} \rho_{\pi}(s) \rightarrow \frac{1}{1 - \gamma} E_{s \sim \rho_{\theta_{\text{old}}}} [\ldots],$$
Next substitution:

$$\sum_a \pi_\theta(a|s_n) A_{\theta_{old}}(s_n, a) \rightarrow \mathbb{E}_{a \sim q} \left[\frac{\pi_\theta(a|s_n)}{q(a|s_n)} A_{\theta_{old}}(s_n, a) \right]$$

(16)

where q is some sampling distribution over the actions and s_n is a particular sampled state.

This second substitution is to use importance sampling to estimate the desirable sum, enabling the use of an alternate sampling distribution q (other than the new policy π_θ).

Third substitution:

$$A_{\theta_{old}} \rightarrow Q_{\theta_{old}}$$

(17)

Note that the above substitutions do not change solution to the above optimization problem.
Selecting the Sampling Policy

- Optimize

\[
\max_\theta \mathbb{E}_{s \sim \rho_{\theta_{old}}, a \sim q} \left[\frac{\pi_\theta(a|s)}{q(a|s)} Q_{\theta_{old}}(s, a) \right]
\]

subject to \(\mathbb{E}_{s \sim \rho_{\theta_{old}}} D_{KL}(\pi_{\theta_{old}}(\cdot|s), \pi_\theta(\cdot|s)) \leq \delta \)

- Standard approach: sampling distribution is \(q(a|s) \) is simply \(\pi_{old}(a|s) \)
- For the vine procedure see the paper
Searching for the Next Parameter

- Use a linear approximation to the objective function and a quadratic approximation to the constraint
- Constrained optimization problem
- Use conjugate gradient descent
Table of Contents

1. Better Gradient Estimates
2. Policy Gradient Algorithms and reducing Variance
3. Updating the Parameters Given the Gradient: Motivation
4. Need for Automatic Step Size Tuning
5. Updating the Parameters Given the Gradient: Local Approximation
6. Updating the Parameters Given the Gradient: Trust Regions
7. Updating the Parameters Given the Gradient: TRPO Algorithm
Practical Algorithm: TRPO

1: \textbf{for} iteration=1, 2, \ldots \textbf{do}
2: \hspace{1em} Run policy for T timesteps or N trajectories
3: \hspace{1em} Estimate advantage function at all timesteps
4: \hspace{1em} Compute policy gradient g
5: \hspace{1em} Use CG (with Hessian-vector products) to compute $F^{-1}g$ where F is the Fisher information matrix
6: \hspace{1em} Do line search on surrogate loss and KL constraint
7: \textbf{end for}

Emma Brunskill (CS234 Reinforcement Learning)
Applied to

- Locomotion controllers in 2D
- Atari games with pixel input
TRPO Results

Cartpole

Swimmer

- Vine
- Single Path
- Natural Gradient
- Max KL
- Empirical FIM
- CEM
- CMA
- RWR
- REPS

number of policy iterations vs. cost

number of policy iterations vs. cost
TRPO Results

Hopper

- Vine
- Single Path
- Natural Gradient
- CEM
- RWR
- REPS

Walker

- Vine
- Single Path
- Natural Gradient
- CEM
- RWR
- REPS

cost vs. number of policy iterations
TRPO Summary

- Policy gradient approach
- Uses surrogate optimization function
- Automatically constrains the weight update to a trusted region, to approximate where the first order approximation is valid
- Empirically consistently does well
- Very influential: +350 citations since introduced a few years ago
Common Template of Policy Gradient Algorithms

1: for iteration = 1, 2, ... do
2: Run policy for T timesteps or N trajectories
3: At each timestep in each trajectory, compute target $Q^\pi(s_t, a_t)$, and baseline $b(s_t)$
4: Compute estimated policy gradient \hat{g}
5: Update the policy using \hat{g}, potentially constrained to a local region
6: end for
Policy Gradient Summary

- Extremely popular and useful set of approaches
- Can input prior knowledge in the form of specifying policy parameterization
- You should be very familiar with REINFORCE and the policy gradient template on the prior slide
- Understand where different estimators can be slotted in (and implications for bias/variance)
- Don’t have to be able to derive or remember the specific formulas in TRPO for approximating the objectives and constraints
- Will have the opportunity to practice with these ideas in homework 3