Human-in-the-loop RL

Emma Brunskill
CS234 Spring 2017
From here healthcare... to education,
DESCRIPTIONS AND HISTOGRAMS (1/3 points)

The price of airline tickets varies over time. The following is a histogram that could describe the distribution of airplane ticket prices. Select the best option for each of the questions below.

The x-axis should be labeled as

- Time
- Ticket Price
- Frequency
- Distribution

w/Karan Goel, Rika Antonova, Joe Runde, Christoph Dann, & Dexter Lee
Setting

- **Set of N skills**
 - Understand what x-axis represents
 - Estimate the mean value from a histogram
 - ...
- **Assume student can learn each skill independently**
- **Policy** is a mapping from the history of prior skill practices & their outcomes to whether or not to give the student another practice problem
 - E.g. (incorrect, incorrect, incorrect) → give another practice
 - (correct, correct) → no more practice
- **Use a parameterized policy** to characterize the teaching policy for each skill
- **Reward** is a function of the student’s performance on a post test after the policy for each skill says “no more practice” and how much practice gave
Initial Work: Bayesian Optimization Policy Search
Learning to Teach

Goal: Should Learn Policy That Maximizes Expected Student Outcomes

Bayesian Optimization with a Gaussian Process

$\pi = f(\theta_i)$

Create new training point $[f(\theta_i), R]$

Teach a learner with policy π in environment for T steps, observe reward R
Reward Signal?

- Balance post test performance with amount of practice needed
- $p_s =$ Performance on skill s,
- $p =$ Post test performance across all skills,
- $l =$ # practices for skill s

$$f(\pi) = \frac{p_s + 1_{(p > 9)}}{\sqrt{l}}$$
During Policy Search Tutoring System Stopped Teaching Some Histogram Skills
Reward Signal: Post Test / # Problems

Given

\[f(\pi) = \frac{p_s + \mathbb{I}(p > 9)}{\sqrt{l}} \]
During Policy Search Tutoring System Stopped Teaching Some Histogram Skills

- No improvement in post test → system had learned that some of our content was inadequate so best thing was to skip it!
- Content (action space) insufficient to achieve goals
Humans are Invention Machines

New actions

New sensors
Invention Machines: Creating Systems that Can Evolve Beyond Their Original Capacity To Reach Extraordinary Performance

New actions

New sensors
Problem Formulation

• Maximize expected reward
• Online reinforcement learning
• Directed action invention
 – Where (which states) should we add actions at?
Related Work

• Policy advice / learning from demonstration
• Changing action spaces
 – Almost all work is reactive, not active solicitation

Mandel, Liu, Brunskil & Popovic, AAAI 2017
Online reinforcement learning

Active Domain (Action Space) Adaptation

Environment

Actions

Outcomes

Agent

State selector

Reinforcement Learning Algorithm

State Queries

New Actions

Human

Mandel, Liu, Brunskil & Popovic, AAAI 2017
Requesting New Actions

$$\arg \max_s \sum_{s_0 \in S_0} V_{A \cup a_n} (s_0) p(s_0)$$

- Current action set
- New action
Expected Local Improvement

$$\arg \max_s \int_a p_s(a_h)(V_{A\cup a_h}(s) - V_A(s)) \, da_h$$

- Prob. human gives you action a_h for state s
- Improvement in value at state s if add in action a_h
\[ELI(s) = \int_a p_s(a_h)(V_{A∪a_h}(s) - V_A(s))da_h \]
\[\leq \int_{a:V_{A∪a_h}(s) > V_A(s)} p_s(a_h)(V_{A∪a_h}(s) - V_A(s))da_h \]
\[\leq (V_{max} - V_A(s)) \int_{a:V_{A∪a_h}(s) > V_A(s)} p_s(a_h)da_h \]

V(s) given current action set
Probability get a new action that will increase V(s)

Unknown!
What to Use for $V_A(s)$

$$(V_{\text{max}} - V_A(s)) \int_{a: V_{A \cup a}(s) > V_A(s)} p_s(a_h) da_h$$

• Be optimistic (MBIE, Rmax, …)

• Why?
 – Don’t need to add in new actions if current action set might yield optimal behavior
 – Avoids focusing on highly unlikely states

Mandel, Liu, Brunskil & Popovic, AAAI 2017
Probability of Getting a Better Action

\[(V_{\text{max}} - V_A(s)) \int_{a: V_{A \cup a_h}(s) > V_A(s)} p_s(a_h) da_h \]

- Don’t want to ask for actions at same state forever (maybe no improvement possible)
- Model prob of a better action as \(\text{Beta}(1, |A_{s,\ell}| + 1) \)
- Chance of better action decays w/ # of actions

\[ELI(s) = \frac{1}{|A_{s,\ell}| + 2} \left(V_{\text{max}} - V_A(s) \right) \]

Mandel, Liu, Brunskil & Popovic, AAAI 2017
Simulations

• Large action task* (Sallans & Hinton 2004)
 – 13 states
 – 273 outcomes (next possible states per state)
 – 2^{20} actions per state

• At start each s has single a (like default π)

• Every 20 steps can request an action
 – Sample action at random from action set for s
 – Compare ELI vs Random s vs High freq s

Mandel, Liu, Brunskil & Popovic, AAAI 2017
*With best choice of algorithm for choosing current value

Mandel, Liu, Brunskil & Popovic, AAAI 2017
Mostly Bad Human Input

![Graph showing cumulative reward over episodes for different input methods: No addition, ELI-NoLearn, Random, and ELI. The graph illustrates how the cumulative reward improves over episodes for ELI compared to the other methods.]

Mandel, Liu, Brunskil & Popovic, AAAI 2017
Chrissy loves exploring outdoors. Yesterday, she saw a herd of 12 elk being chased by a pack of 8 wolves. How many animals in total did Chrissy see while she was exploring?
Chrissy loves exploring outdoors. Yesterday, she saw a herd of 12 elk being chased by a pack of 8 wolves. How many animals in total did Chrissy see while she was exploring?

- New actions = new hints
- Learning where to ask for new hints
Summary

- Can use RL towards personalized, automated tutoring
 - More applications next week!
- Can create RL systems that evolve beyond their original specification
 - Not limited by original state/action space
 - Help humans-in-the-loop prioritize effort
 - Towards extraordinary performance