Recap: Value Iteration (VI)

1. Initialize $V_0(s_i)=0$ for all states s_i,
2. Set $k=1$
3. Loop until [finite horizon, convergence]
 • For each state s,
 \[
 V_{k+1}(s) = \max_a \left[r(s, a) + \gamma \sum_{s' \in S} p(s' | a, s) V_k(s') \right]
 \]
4. Extract Policy
V_k is optimal value if horizon=k

1. Initialize V_0(s_i)=0 for all states s_i,
2. Set k=1
3. Loop until [finite horizon, convergence]
 • For each state s,
 \[
 V_{k+1}(s) = \max_a \left[r(s, a) + \gamma \sum_{s' \in S} p(s'|a, s)V_k(s') \right]
 \]
4. Extract Policy

Bellman backup
Value vs Policy Iteration

- **Value iteration:**
 - Compute optimal value if horizon = k
 - *Note this can be used to compute optimal policy if horizon = k*
 - Increment k

- **Policy iteration:**
 - Compute infinite horizon value of a policy
 - Use to select another (better) policy
 - Closely related to a very popular method in RL: policy gradient
Policy Iteration (PI)

1. i=0; Initialize $\pi_0(s)$ randomly for all states s
2. Converged = 0;
3. While i == 0 or $|\pi_i - \pi_{i-1}| > 0$
 • i=i+1
 • Policy evaluation
 • Policy improvement
Policy Evaluation

1. Use minor variant of value iteration

\[V_{k+1}(s) = \max_a \left[r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V_k(s') \right] \]
Policy Evaluation

1. Use minor variant of value iteration

\[V_{k+1}(s) = \max_a \left[r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V_k(s') \right] \]

\[V_{k+1}^\pi(s) = r(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s))V_k^\pi(s') \]

→ restricts action to be one chosen by policy
Policy Evaluation

1. Use minor variant of value iteration

\[
V_{k+1}(s) = \max_a \left[r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V_k(s') \right]
\]

\[
V_{k+1}^\pi(s) = r(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s))V_k^\pi(s')
\]

2. Analytic solution (for discrete set of states)
 • Set of linear equations (no max!)
 • Can write as matrices and solve directly for V
Policy Evaluation: Example

- Deterministic actions of TryLeft or TryRight
- Reward: +1 in state S1, +10 in state S7, 0 otherwise
- Let $\pi_0(s) =$TryLeft for all states (e.g. always go left)
- Assume $\gamma = 0$. What is the value of this policy in each s?

$$V_{k+1}^\pi(s) = r(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s)) V_{k}^\pi(s')$$
Policy Improvement

• Have $V^\pi(s)$ for all s (from policy evaluation step!)
• Want to try to find a better (higher value) policy

Idea:
• Find the state-action Q value of doing an action followed by following π forever, for each state
• Then take argmax of Qs
Policy Improvement

• Compute Q value of different 1st action and then following π_i

$$Q^{\pi_i}(s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V^{\pi_i}(s')$$

• Use to extract a new policy

$$\pi_{i+1}(s) = \text{arg max}_a Q^{\pi_i}(s, a)$$
Delving Deeper Into Improvement

\[
Q^{\pi_i}(s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V^{\pi_i}(s')
\]

\[
\max_a Q^{\pi_i}(s, a) \geq V^{\pi_i}(s)
\]

\[
\pi_{i+1}(s) = \arg \max_a Q^{\pi_i}(s, a)
\]

• So if take \(\pi_{i+1}(s)\) then followed \(\pi_i\) forever,
 • expected sum of rewards would be at least as good as if we had always followed \(\pi_i\)
• But new proposed policy is to always follow \(\pi_{i+1}\) ...
Monotonic Improvement in Policy

• For any two value functions V_1 and V_2, let $V_1 \geq V_2 \rightarrow$ for all states s, $V_1(s) \geq V_2(s)$

• Proposition: $V^{\pi'} \geq V^{\pi}$ with strict inequality if π is suboptimal (where π' is the new policy we get from doing policy improvement)
Proof

\[V^\pi (s) \leq \max_a Q^\pi (s, a) \]

\[= \sum_{s' \in S} p(s' | s, \pi'(s)) \left[R(s, \pi'(s), s') + \gamma V^\pi (s') \right] \]

\[\leq \sum_{s' \in S} p(s' | s, \pi'(s)) \left[R(s, \pi'(s), s') + \gamma \max_{a'} Q^\pi (s', a') \right] \]

\[= \sum_{s' \in S} p(s' | s, \pi'(s)) \left[R(s, \pi'(s), s') + \gamma \sum_{s'' \in S} p(s'' | s', \pi'(s'))(R(s', \pi'(s'), s'' + \gamma V^\pi (s'')) \right] \]

\[\ldots \leq V^{\pi'} (s) \]
If Policy Doesn’t Change ($\pi_{i+1}(s) = \pi_i(s)$ for all s) Can It Ever Change Again in More Iterations?

- Recall policy improvement step

$$Q^{\pi_i}(s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V^{\pi_i}(s')$$

$$\pi_{i+1}(s) = \arg \max_a Q^{\pi_i}(s, a)$$
Policy Iteration (PI)

1. \(i=0; \) Initialize \(\pi_0(s) \) randomly for all states \(s \)
2. Converged = 0;
3. While \(i == 0 \) or \(|\pi_i - \pi_{i-1}| > 0 \)
 • \(i=i+1 \)
 • Policy evaluation: Compute \(V^\pi \)
 • Policy improvement:
 \[
 Q^{\pi_i}(s, a) = r(s, a) + \gamma \sum_{s'} p(s'|s, a) V^{\pi_i}(s')
 \]
 \[
 \pi_{i+1}(s) = \arg \max_a Q^{\pi_i}(s, a)
 \]
Policy Iteration Can Take At Most $|A|^{|S|}$ Iterations (Size of # Policies)

1. i=0; Initialize $\pi_0(s)$ randomly for all states s
2. Converged = 0;
3. While i == 0 or $|\pi_i - \pi_{i-1}| > 0$
 - i=i+1
 - Policy evaluation: Compute V^π
 - Policy improvement:
 $$Q^{\pi_i}(s, a) = r(s, a) + \gamma \sum_{s'} p(s'|s, a)V^{\pi_i}(s')$$
 $$\pi_{i+1}(s) = \arg \max_a Q^{\pi_i}(s, a)$$

* For finite state and action spaces
Policy Iteration
- Fewer Iterations
- More expensive per iteration

Value Iteration
- More iterations
- Cheaper per iteration
MDPs: What You Should Know

- Definition
- How to define for a problem
- MDP Planning: Value iteration and policy iteration
 - How to implement
 - Convergence guarantees
 - Computational complexity
Reasoning Under Uncertainty

<table>
<thead>
<tr>
<th>Learn model of outcomes</th>
<th>Multi-armed bandits</th>
<th>Reinforcement Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given model of stochastic outcomes</td>
<td>Decision theory</td>
<td>Markov Decision Processes</td>
</tr>
</tbody>
</table>

- Actions Don’t Change State of the World
- Actions Change State of the World
Reinforcement Learning

Transition Model?

Observation → Action

Reward model?

Goal: Maximize expected sum of future rewards
MDP Planning vs Reinforcement Learning

- No world models (or simulators)
- Have to learn how world works by trying things out

<table>
<thead>
<tr>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Okay Field Site +1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fantastic Field Site +10</td>
</tr>
</tbody>
</table>
Policy Evaluation While Learning

- Before figuring out how should act
- 1st figure out how good a particular policy is (passive RL)
Passive RL

1. Estimate a model (and use to do policy evaluation)
2. Q-learning
Learn a Model

<table>
<thead>
<tr>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Okay Field Site +1</td>
<td></td>
<td></td>
<td>![Mars Rover Image]</td>
<td></td>
<td></td>
<td>Fantastic Field Site +10</td>
</tr>
</tbody>
</table>

- Start in state S3, take TryLeft, go to S2
- In state S2, take TryLeft, go to S2
- In state S2, take TryLeft, go to S1
- What’s an estimate of $p(s’=S2 \mid S=S2, a=\text{TryLeft})$?
Use Maximum Likelihood Estimate
E.g. Count & Normalize

Start in state S_3, take TryLeft, go to S_2
In state S_2, take TryLeft, go to S_2
In state S_2, take TryLeft, go to S_1
What’s an estimate of $p(s' = S_2 | S = S_2, a = \text{TryLeft})$?
 • $1/2$
Model-Based Passive Reinforcement Learning

• Follow policy π
• Estimate MDP model parameters from data
 • If finite set of states and actions: count & average
• Use estimated MDP to do policy evaluation of π
Model-Based Passive Reinforcement Learning

• Follow policy π
• Estimate MDP model parameters from data
 • If finite set of states and actions: count & average
• Use estimated MDP to do policy evaluation of π

• Does this give us dynamics model parameter estimates for all actions?
• How good is the model parameter estimates?
• What about the resulting policy value estimate?
Model-Based Passive Reinforcement Learning

- Follow policy π
- Estimate MDP model parameters from data
 - If finite set of states and actions: count & average
- Use estimated MDP to do policy evaluation of π

- Does this give us dynamics model parameter estimates for all actions?
 - No. But all ones need to estimate the value of the policy.
- How good is the model parameter estimates?
 - Depends on amount of data we have
- What about the resulting policy value estimate?
 - Depends on quality of model parameters
Good Estimate if Use 2 Data Points?

<table>
<thead>
<tr>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Okay Field Site +1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fantastic Field Site +10</td>
</tr>
</tbody>
</table>

- Start in state S3, take TryLeft, go to S2, r=0
- In state S2, take TryLeft, go to S2, r = 0
- In state S2, take TryLeft, go to S1,
- What’s an estimate of \(p(s'=S2 \mid S=S2, a=\text{TryLeft}) \)?
 - 1/2
Model-based Passive RL:
Agent has an estimated model in its head

Transition Model?

P(s'|s_1, a_1) = 0.5
R(s_1, a_1) = 1...

State
Action

Reward model?

Agent
Model-free Passive RL:
Only maintain estimate of Q
Q-values

- Recall that $Q^\pi(s,a)$ values are
 - expected discounted sum of rewards over H step horizon
 - if start with action a and follow π
- So how could we directly estimate this?
Q-values

\[Q^{\pi_i}(s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)V^{\pi_i}(s') \]

- Want to approximate the above with data
- Note if only following \(\pi \), only get data for \(a=\pi(s) \)
Q-values

\[Q^{\pi_i}(s,a) = r(s,a) + \gamma \sum_{s' \in S} p(s'|s,a)V^{\pi_i}(s') \]

- Want to approximate the above with data
- Note if only following \(\pi \), only get data for \(a = \pi(s) \)

- TD-learning
 - Approximate expectation with samples
 - Approximate future reward with estimate
Temporal Difference Learning

\[V^\pi(s) = r(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s)) V^\pi(s') \]

- Maintain estimate of \(V^\pi(s) \) for all states
 - Update \(V^\pi(s) \) each time after each transition \((s, a, s', r)\)
 - Likely outcomes \(s' \) will contribute updates more often
 - Approximating expectation over next state with samples
 - Running average

\[V_{samp}(s) = r + \gamma V^\pi(s') \]

\[V^\pi(s) = (1 - \alpha)V^\pi(s) + \alpha V_{samp}(s) \]

Decrease learning rate over time (why?)
\[V_{samp}(s) = r + \gamma V^{\pi}(s') \]

\[V^{\pi}(s) = (1 - \alpha)V^{\pi}(s) + \alpha V_{samp}(s) \]

<table>
<thead>
<tr>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Okay Field Site +1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fantastic Field Site +10</td>
</tr>
</tbody>
</table>

- **Policy:** TryLeft in all states, use \(\alpha = 0.5 \), \(\gamma = 1 \)
- **Set** \(V^{\Pi} = [0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0] \),
- **Start** in state S3, take TryLeft, get \(r = 0 \), go to S2
 - \(V_{samp}(S3) = 0 + 1 \times 0 = 0 \)
 - \(V^{\Pi}(S3) = (1 - 0.5) \times 0 + 0.5 \times 0 = 0 \) (no change!)
\[V_{samp}(s) = r + \gamma V^\pi(s') \]

\[V^\pi(s) = (1 - \alpha)V^\pi(s) + \alpha V_{samp}(s) \]

<table>
<thead>
<tr>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Okay Field Site +1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fantastic Field Site +10</td>
</tr>
</tbody>
</table>

- Policy: TryLeft in all states, use \(\alpha = 0.5 \), \(\gamma = 1 \)
- Set \(V^\pi = [0 0 0 0 0 0 0] \),
- Start in state S3, take TryLeft, go to S2, get \(r = 0 \)
- \(V^\pi = [0 0 0 0 0 0 0] \)
- In state S2, take TryLeft, get \(r = 0 \), go to S1
 - \(V_{samp}(S2) = 0 + 1 \times 0 = 0 \)
 - \(V^\pi(S2) = (1-0.5) \times 0 + .5 \times 0 = 0 \) (no change!)
Policy: TryLeft in all states, use $\alpha = 0.5$, $\gamma = 1$

- Start in state $S3$, take TryLeft, go to $S2$, get $r = 0$
- In state $S2$, take TryLeft, go to $S1$, get $r = 0$
- $V^\pi(S1) = [0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]$
- In state $S1$, take TryLeft, go to $S1$, get $r = +1$
 - $V_{samp}(S1) = 1 + 1 \times 0 = 1$
 - $V^\pi(S1) = (1-0.5) \times 0 + 0.5 \times 1 = 0.5$
\[V_{samp}(s) = r + \gamma V^\pi(s') \]

\[V^\pi(s) = (1 - \alpha)V^\pi(s) + \alpha V_{samp}(s) \]

<table>
<thead>
<tr>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Okay Field Site +1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fantastic Field Site +10</td>
</tr>
</tbody>
</table>

- Policy: TryLeft in all states, use alpha = 0.5, \(\gamma = 1 \)
- Start in state S3, take TryLeft, go to S2, get \(r=0 \)
- In state S2, take TryLeft, go to S1, get \(r=0 \)
- \(V^\pi = [0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0] \)
- In state S1, take TryLeft, go to S1, get \(r=+1 \)
- \(V^\pi = [0.5 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0] \)
Problems with Passive Learning

- Want to make good decisions
- Initial policy may be poor -- don’t know what to pick
- And getting only experience for that policy
Can We Learn Optimal Values & Policy?

• Consider acting randomly in the world
• Can such experience allow the agent to learn the optimal values and policy?
Recall Model-Based Passive Reinforcement Learning

- **Follow policy** π
- Estimate MDP model params from observed transitions & rewards
 - If finite set of states and actions, count & avg counts
- Use estimated MDP to do policy evaluation of π
Recall Model-Based Passive Reinforcement Learning

- Choose actions randomly
- Estimate MDP model params from observed transitions & rewards
 - If finite set of states and actions, count & avg counts
- Use estimated MDP to compute estimate of optimal value and policy
- Will policy converge to optimal value & policy
 - (In limit of infinite data)?
Yes, if have reachability

- When acting randomly forever, still need to be able to visit each state and take each action many times
- Want all states to be reachable from any other state
- Quite mild assumption but doesn’t always hold

Image source:
http://ancient-heritage.blogspot.com/2014/05/crash-course-on-flying-in-face-of-logic.html
Model-Free Learning w/Random Actions

• TD learning for policy evaluation:
 • As act in the world go through \((s,a,r,s’,a’,r’,…)\)
 • Update \(V^\pi\) estimates at each step
• Over time updates mimic Bellman updates
• Now do for Q values
Q-Learning

• Update $Q(s, a)$ every time experience (s, a, s', r)
 • Create new sample estimate

$$Q_{samp}(s, a) = r + \gamma V(s')$$

$$= r + \gamma \max_{a'} Q(s', a')$$

• Update estimate of $Q(s, a)$

$$Q(s, a) = (1 - \alpha)Q(s, a) + \alpha Q_{samp}(s, a)$$
Q-Learning Properties

• If acting randomly*, Q-learning converges Q^*
 • Optimal Q values
 • Finds optimal policy

• Off-policy learning
 • Can act in one way
 • But learning values of another π (the optimal one!)

*Again, under mild reachability assumptions
Towards Gathering High Reward

• Fortunately, acting randomly is sufficient, but not necessary, to learn the optimal values and policy
• Ultimately want to learn to get large reward
To Explore or Exploit?

Drawing by Ketrina Yim
Simple Approach: E-greedy

- With probability 1-e
 - Choose \(\text{argmax}_a Q(s,a) \)
- With probability e
 - Select random action

- Guaranteed to compute optimal policy
- But even after millions of steps still won’t always be following \(\text{argmax} \) of \(Q(s,a) \)
Greedy in Limit of Infinite Exploration (GLIE)

- E-Greedy approach
- But decay epsilon over time
- Eventually will be following optimal policy almost all the time

- We’ll talk more about exploration/exploitation later in the course
Homework 1 Will Be Released This Week

- Review/practice basic MDP planning
- Get familiar with Open AI gym for basic RL

FrozenLake-v0
Find a safe path across a grid of ice and water tiles.

FrozenLake8x8-v0
What You Should Know

• Define MDP, Bellman operator, contraction, model, Q-value, policy
• Contrast MDP planning and RL
• Be able to implement
 • Value iteration, policy iteration, Q-learning and model-based RL
• Contrast benefits and weaknesses of Q-learning and model-based RL
 • On homework!
 • Data efficiency, computational complexity, etc.