Experience replay in deep Q-learning (select all):

1. Involves using a bank of prior \((s,a,r,s')\) tuples and doing Q-learning updates on the tuples in the bank
2. Always uses the most recent history of tuples
3. Reduces the data efficiency of DQN
4. Increases the computational cost
5. Not sure
Experience replay in deep Q-learning (select all):

1. Involves using a bank of prior \((s,a,r,s')\) tuples and doing Q-learning updates on the tuples in the bank
2. Always uses the most recent history of tuples
3. Reduces the data efficiency of DQN
4. Increases the computational cost
5. Not sure

Answer: It increases the computational cost, it uses a bank of tuples and it samples them, it’s likely to **improve** the data efficiency, and it does not have to always use the most recent history of tuples.
Class Structure

- Last time: CNNs and Deep Reinforcement learning
- This time: Deep RL
- Next time: Policy Search
Success in Atari has led to huge excitement in using deep neural networks to do value function approximation in RL

Some immediate improvements (many others!)

- Double DQN (Deep Reinforcement Learning with Double Q-Learning, Van Hasselt et al, AAAI 2016)
- Prioritized Replay (Prioritized Experience Replay, Schaul et al, ICLR 2016)
Today

- Double DQN (Deep Reinforcement Learning with Double Q-Learning, Van Hasselt et al, AAAI 2016)
- Prioritized Replay (Prioritized Experience Replay, Schaul et al, ICLR 2016)
- Practical Tips
Double DQN

max $Q(s,a)$

- Recall maximization bias challenge
 - Max of the estimated state-action values can be a biased estimate of the max
- Double Q-learning
Recall: Double Q-Learning

1: Initialize $Q_1(s, a)$ and $Q_2(s, a), \forall s \in S, a \in A$ $t = 0$, initial state $s_t = s_0$

2: loop

3: Select a_t using ϵ-greedy $\pi(s) = \arg \max_a Q_1(s, a) + Q_2(s, a)$

4: Observe (r_t, s_{t+1})

5: if (with 0.5 probability) then

6:

$$Q_1(s_t, a_t) \leftarrow Q_1(s_t, a_t) + \alpha (r_t + Q_2(s_{t+1}, \arg \max_{a'} Q_1(s_{t+1}, a')) - Q_1(s_t, a_t))$$

7: else

8:

$$Q_2(s_t, a_t) \leftarrow Q_2(s_t, a_t) + \alpha (r_t + Q_1(s_{t+1}, \arg \max_{a'} Q_2(s_{t+1}, a')) - Q_2(s_t, a_t))$$

9: end if

10: $t = t + 1$

11: end loop
Double DQN

- Extend this idea to DQN
- Current Q-network w is used to select actions
- Older Q-network w^{-} is used to evaluate actions

$$\Delta w = \alpha (r + \gamma \hat{Q}(\arg\max_{a'} \hat{Q}(s', a'; w); w^{-}) - \hat{Q}(s, a; w))$$

Action evaluation: w^{-}
Action selection: w

does not eliminate max bias
Figure: van Hasselt, Guez, Silver, 2015
Today

- Double DQN (Deep Reinforcement Learning with Double Q-Learning, Van Hasselt et al, AAAI 2016)
- Prioritized Replay (Prioritized Experience Replay, Schaul et al, ICLR 2016)
- Practical Tips
Check Your Understanding: Mars Rover Model-Free Policy Evaluation

<table>
<thead>
<tr>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
<th>s_5</th>
<th>s_6</th>
<th>s_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R(s_1) = +1$ Okay Field Site</td>
<td>$R(s_2) = 0$</td>
<td>$R(s_3) = 0$</td>
<td>$R(s_4) = 0$</td>
<td>$R(s_5) = 0$</td>
<td>$R(s_6) = 0$</td>
<td>$R(s_7) = +10$ Fantastic Field Site</td>
</tr>
</tbody>
</table>

- $\pi(s) = a_1 \forall s, \gamma = 1$. Any action from s_1 and s_7 terminates episode.
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, \text{terminal})$
- First visit MC estimate of V of each state? $[1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0]$
- TD estimate of all states (init at 0) with $\alpha = 1$ is $[1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]$
- Choose 2 additional "replay" backups to do. Which should we pick to get a V estimate closest to MC first visit estimate?
 1. Doesn’t matter, any will yield the same
 2. $(s_3, a_1, 0, s_2)$ then $(s_2, a_1, 0, s_1)$
 3. $(s_2, a_1, 0, s_1)$ then $(s_2, a_1, 0, s_2)$
 4. $(s_2, a_1, 0, s_1)$ then $(s_3, a_1, 0, s_2)$
 5. Not sure
Check Your Understanding: Mars Rover Model-Free Policy Evaluation Solution

<table>
<thead>
<tr>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
<th>s_5</th>
<th>s_6</th>
<th>s_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R(s_1) = +1$
Okay Field Site</td>
<td>$R(s_2) = 0$</td>
<td>$R(s_3) = 0$</td>
<td>$R(s_4) = 0$</td>
<td>$R(s_5) = 0$</td>
<td>$R(s_6) = 0$</td>
<td>$R(s_7) = +10$
Fantastic Field Site</td>
</tr>
</tbody>
</table>

- $\pi(s) = a_1 \forall s$, $\gamma = 1$. Any action from s_1 and s_7 terminates episode.
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, \text{terminal})$
- First visit MC estimate of V of each state? $[1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0]$
- TD estimate of all states (init at 0) with $\alpha = 1$ is $[1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]$
- Choose 2 additional "replay" backups to do. Which should we pick to get a V estimate closest to MC first visit estimate?
 1. Doesn’t matter, any will yield the same
 2. $(s_3, a_1, 0, s_2)$ then $(s_2, a_1, 0, s_1)$
 3. $(s_2, a_1, 0, s_1)$ then $(s_2, a_1, 0, s_2)$
 4. $(s_2, a_1, 0, s_1)$ then $(s_3, a_1, 0, s_2)$
 5. Not sure

Answer: $(s_2, a_1, 0, s_1), (s_3, a_1, 0, s_2)$ yielding $V = [1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0]$.

\[V = \sum_{t=1}^{T} \alpha^t (r_t + \gamma V(s_{t+1})) \]
In tabular TD-learning, **order** of replaying updates could help speed learning

Repeating some updates seems to better propagate info than others

Systematic ways to prioritize updates?
Schaul, Quan, Antonoglou, Silver ICLR 2016

Oracle: picks \((s, a, r, s')\) tuple to replay that will minimize global loss

Exponential improvement in convergence
 - Number of updates needed to converge

Oracle is not a practical method but illustrates impact of ordering
Prioritized Experience Replay

- Let \(i \) be the index of the \(i \)-th tuple of experience \((s_i, a_i, r_i, s_{i+1})\)
- **Sample tuples for update using priority function**
- Priority of a tuple \(i \) is proportional to DQN error

\[
p_i = \left| r + \gamma \max_{a'} Q(s_{i+1}, a'; w^-) - Q(s_i, a_i; w) \right|
\]

- Update \(p_i \) every update. \(p_i \) for new tuples is set to maximum value
- One method\(^1\): proportional (stochastic prioritization)

\[
P(i) = \frac{p_i^\beta}{\sum_k p_k^\beta}
\]

\(^1\)See paper for details and an alternative
Check Your Understanding: Prioritized Replay

- Let i be the index of the i-th tuple of experience (s_i, a_i, r_i, s_{i+1})
- Sample tuples for update using priority function
- Priority of a tuple i is proportional to DQN error
 \[
 p_i = \left| r + \gamma \max_{a'} Q(s_{i+1}, a'; w^-) - Q(s_i, a_i; w) \right|
 \]
- Update p_i every update.
- One method [See paper for details]: proportional (stochastic prioritization)
 \[
 P(i) = \frac{p_i^\beta}{\sum_k p_k^\beta}
 \]
- $\beta = 0$ yields what rule for selecting among existing tuples?
 - Selects randomly
 - Selects the one with the highest priority
 - It depends on the priorities p of the tuples
 - Not Sure
Check Your Understanding: Prioritized Replay

- Let \(i\) be the index of the \(i\)-th tuple of experience \((s_i, a_i, r_i, s_{i+1})\).
- Sample tuples for update using priority function.
- Priority of a tuple \(i\) is proportional to DQN error
 \[
 p_i = \left| r + \gamma \max_{a'} Q(s_{i+1}, a'; w^-) - Q(s_i, a_i; w) \right|
 \]
- Update \(p_i\) every update.
- One method\(^1\): proportional (stochastic prioritization)
 \[
 P(i) = \frac{p_i^\beta}{\sum_k p_k^\beta}
 \]
- \(\beta = 0\) yields what rule for selecting among existing tuples?
 - Selects randomly
 - Selects the one with the highest priority
 - It depends on the priorities of the tuples
 - Not Sure
 Answer: Selects randomly

\(^1\) See paper for details and an alternative.
Performance of Prioritized Replay vs Double DQN

Figure: Schaul, Quan, Antonoglou, Silver ICLR 2016
Today

- Double DQN (Deep Reinforcement Learning with Double Q-Learning, Van Hasselt et al, AAAI 2016)
- Prioritized Replay (Prioritized Experience Replay, Schaul et al, ICLR 2016)
- Practical Tips
Intuition: Features needed to accurately represent value may be different than those needed to specify difference in actions.

E.g.
- Game score may help accurately predict $V(s)$
- But not necessarily in indicating relative action values $Q(s, a_1)$ vs $Q(s, a_2)$

Advantage function (Baird 1993)

$$A^\pi(s, a) = Q^\pi(s, a) - V^\pi(s)$$
Dueling DQN

Wang et.al., ICML, 2016
Advantage Function and Training

- Advantage function

\[A^\pi(s, a) = Q^\pi(s, a) - V^\pi(s) \]

- Consider a network that outputs \(V(s; \theta, \beta) \) as well as advantage \(A(s, a; \theta, \lambda) \) where \(\theta, \beta, \) and \(\lambda \) are parameters.

- To construct \(Q \) could use \(Q(s, a; \theta, \beta, \lambda) = V(s; \theta, \beta) + A(s, a; \theta, \lambda) \)

- Do we expect that this architecture will result in learning a good estimate of true \(V \) or \(A \)?
Check Your Understanding: Unique?

- Advantage function

\[A^\pi(s, a) = Q^\pi(s, a) - V^\pi(s) \]

- For a given Q function, is there a unique A advantage function and V?
 1. Yes
 2. No
 3. Not sure
Check Your Understanding: Unique?

- Advantage function

\[A^\pi(s, a) = Q^\pi(s, a) - V^\pi(s) \]

- For a given Q function, is there a unique A advantage function and V?
 - 1. Yes
 - 2. No
 - 3. Not sure

Answer: No. If we are just given a Q, there are many A and V that could satisfy this – for example, by shifting things by a constant. This can cause challenges for using the simple proposal before:

\[Q(s, a; \theta, \beta, \lambda) = V(s; \theta, \beta) + A(s, a; \theta, \lambda) \]
Uniqueness

- Consider a network that outputs $V(s; \theta, \beta)$ as well as advantage $A(s, a; \theta, \lambda)$ where θ, β, and λ are parameters.
- To construct Q could use $Q(s, a; \theta, \beta, \lambda) = V(s; \theta, \beta) + A(s, a; \theta, \lambda)$.
- Option 1: Force $Q(s, a) = V(s)$ for the best action suggested by the advantage:

$$
\hat{Q}(s, a; w) = \hat{V}(s; w) + \left(\hat{A}(s, a; w) - \max_{a' \in \mathcal{A}} \hat{A}(s, a'; w) \right)
$$

- This helps force the V network to approximate V.
Uniqueness

Consider a network that outputs $V(s; \theta, \beta)$ as well as advantage $A(s, a; \theta, \lambda)$ where θ, β, and λ are parameters.

To construct Q could use $Q(s, a; \theta, \beta, \lambda) = V(s; \theta, \beta) + A(s, a; \theta, \lambda)$

Option 1: Force $Q(s, a) = V(s)$ for the best action suggested by the advantage:

$$\hat{Q}(s, a; w) = \hat{V}(s; w) + \left(\hat{A}(s, a; w) - \max_{a' \in \mathcal{A}} \hat{A}(s, a'; w) \right)$$

This helps force the V network to approximate V

Option 2: Use mean as baseline (more stable)

$$\hat{Q}(s, a; w) = \hat{V}(s; w) + \left(\hat{A}(s, a; w) - \frac{1}{|\mathcal{A}|} \sum_{a' \in \mathcal{A}} \hat{A}(s, a'; w) \right)$$

More stable often because averaging over all advantages instead of the advantage of the current max action.
Dueling DQN V.S. Double DQN with Prioritized Replay

Figure: Wang et al, ICML 2016
Today

- Double DQN (Deep Reinforcement Learning with Double Q-Learning, Van Hasselt et al, AAAI 2016)
- Prioritized Replay (Prioritized Experience Replay, Schaul et al, ICLR 2016)

- Practical Tips
DQN is more reliable on some Atari tasks than others. Pong is a reliable task: if it doesn’t achieve good scores, something is wrong.

Large replay buffers improve robustness of DQN, and memory efficiency is key.
 - Use uint8 images, don’t duplicate data

Be patient. DQN converges slowly—for ATARI it’s often necessary to wait for 10-40M frames (couple of hours to a day of training on GPU) to see results significantly better than random policy.

In our Stanford class: Debug implementation on small test environment.
Try Huber loss on Bellman error

\[L(x) = \begin{cases}
\frac{x^2}{2} & \text{if } |x| \leq \delta \\
\delta |x| - \frac{\delta^2}{2} & \text{otherwise}
\end{cases} \]
Practical Tips for DQN on Atari (from J. Schulman) cont.

- Try Huber loss on Bellman error
 \[L(x) = \begin{cases}
 \frac{x^2}{2} & \text{if } |x| \leq \delta \\
 \delta |x| - \frac{\delta^2}{2} & \text{otherwise}
 \end{cases} \]

- Consider trying Double DQN—significant improvement from small code change

- To test out your data pre-processing, try your own skills at navigating the environment based on processed frames

- Always run at least two different seeds when experimenting

- Learning rate scheduling is beneficial. Try high learning rates in initial exploration period

- Try non-standard exploration schedules
Recap: Deep Model-free RL, 3 of the Early Big Ideas

- Double DQN: (Deep Reinforcement Learning with Double Q-Learning, Van Hasselt et al, AAAI 2016)
- Prioritized Replay (Prioritized Experience Replay, Schaul et al, ICLR 2016)

Very active area of research!
DNN are very expressive function approximators
Can use DNNs to represent the Q function and do MC or TD style methods
You should be able to implement DQN (assignment 2)
You should be able to list a few extensions that help performance beyond DQN
Class Structure

- Last time: CNNs and Deep Reinforcement learning
- This time: Deep RL
- Next time: Policy Search