
2
Markov Decision Processes, Intro to RL

This chapter provides an introduction to fundamental topics in decision making,
including for problems where there is some uncertainty (e.g. uncertainty about
the robot’s state or about the environment).

Sequential Decision Making

Two of the fundamental challenges associated with robotic decision making are
that sequences of decisions must be made (which requires reasoning about future
actions and observations) and that uncertainty may exist in the operating envi-
ronment. This chapter presents a modeling framework for addressing decision
making problems and will also introduce dynamic programming, a fundamental
approach for solving these problems.

2.1 Deterministic Decision Making Problem

The standard mathematical formulation for decision making problems includes
several components: a model of the robot’s behavior, a set of admissible con-
trols, and a cost function. This set of components is quite similar to the com-
ponents used in trajectory optimization problems, however decision making
problems are generally represented in discrete-time rather than in continuous-
time1. 1 There is a continuous-time for-

mulation, known as the Hamil-
ton–Jacobi–Bellman formulation.

In the deterministic decision making problem, the model of the robot is ex-
pressed in discrete-time as:

xk+1 = fk(xk, uk), k = 0, . . . , N − 1, (2.1)

where x is the robot’s state, u is the control, fk defines how the robot’s state
changes at time step k, and N is an integer that defines a finite planning horizon
for the decision making problem. There are generally no restrictions on how the
functions fk are defined, they could come from a physics-based dynamics/kine-
matics model or even a higher-level state transition model.

It is also generally assumed that only some control actions are admissible at
a given state, which denoted by the set U (xk). For example a car may only have

2 markov decision processes, intro to rl

an option to turn left or right when it is at an intersection. Therefore the control
constraints for the robot at time step k are given by:

uk ∈ U (xk). (2.2)

Again, there are generally no restrictions on how the set of admissible control is
defined. For example U (xk) could be a finite set of actions, it could be a convex
region of allowable inputs, etc.

The cost function is assumed to be additive, and is defined as:

J(x0, u0, . . . , uN−1) = gN(xN) +
N−1

∑
k=0

gk(xk, uk), (2.3)

where gN is a terminal state cost function and gk for k = 0, . . . , N − 1 are stage
cost functions. These individual cost functions are also not restricted to a partic-
ular form (e.g. convex, differentiable, etc.).

Definition 2.1.1 (Deterministic Decision Making Problem). The deterministic
decision making problem can be expressed for the system model (2.1), control constraints
(2.2), and cost function (2.3) as:

J∗(x0) = min
uk∈U (xk), k=0,...,N−1

J(x0, u0, . . . , uN−1). (2.4)

Notice that this problem is used to compute an open-loop control sequence
{u0, . . . , uN−1} given an initial condition x0. However, this problem is gener-
ally quite hard to solve since there is no guarantee that the model (2.1) and cost
function (2.3) have any particular structure that can be leveraged to make the
optimization problem amenable to numerical optimization algorithms. While it
is theoretically possible to solve the problem through a brute force search over
all possible combinations of sequences {u0, . . . , uN−1}, this leads to a combi-
natorial explosion of options and is therefore not possible in practical settings
(except of course for very small problems).

2.1.1 Principle of Optimality (Deterministic)

Fortunately, there is in fact an underlying structure to the deterministic decision
making problem that can be leveraged to make the problem easier to solve. This
structure is commonly referred to as the principle of optimality.

The principle of optimality for deterministic systems is that for a sequence
of optimal decisions, the tail of the optimal sequence is also optimal for a tail
subproblem. For a concrete example see Figure 2.1. This can greatly simplify the
overall problem, since you can “reuse” optimal paths for different scenarios.
More formally, the principle of optimality is given by the following theorem:

Theorem 2.1.2 (Principle of Optimality (Deterministic)). Let {u∗
0 , u∗

1 . . . , u∗
N−1}

be an optimal control sequence to the deterministic decision making problem (2.4)
with a given initial condition x∗0 , such that the resulting optimal state sequence is

principles of robot autonomy 3

Figure 2.1: Starting from point
a, let the red path a − b − e
be the optimal path from
a to e, with a total cost of
J∗ae = Jab + Jbe. The principle
of optimality in this case says
that the path b − e must there-
fore be the optimal path when
starting from point b. This can
be proven by contradiction,
since if the path b − c − e had
a lower cost than path b − e
(i.e. Jbce < Jbe), then the orig-
inal path a − b − e cannot be
optimal!

{x∗0 , x∗1 . . . , x∗N}. Then, the tail sequence {u∗
k , . . . , u∗

N−1} is an optimal control sequence
when starting from x∗k and minimizing the cost from time k to time N

Jtail(xk, uk, . . . , uN−1) = gN(xN) +
N−1

∑
m=k

gm(xm, um).

To see how the principle of optimality can be applied to simplify the decision
making problem, consider the scenario in Figure 2.2. In this case it is desired
to find an optimal path from point b to point f , and it is assumed that optimal
paths from c, d, and e to f are already known. A brute force search over all
possible paths in this problem would require nine paths to be evaluated:

{b − c − f , b − c − d − f , b − c − d − e − f , b − d − c − f , b − d − f ,

b − d − e − f , b − e − d − c − f , b − e − d − f , b − e − f }.

However, by leveraging the principle of optimality the number of candidate
paths is reduced to three:

b − c − f , b − d − f , b − e − f .

In other words, the principle of optimality allows the search to be performed
over immediate decisions by also concatenating the optimal tail decisions! This
procedure is generally implemented backward in time, for example in Figure
2.2 the point f (the goal) is first evaluated, then the points c, d, and e, and then
finally the point b.

2.1.2 Dynamic Programming (Deterministic)

The dynamic programming (DP) algorithm globally solves the deterministic
decision making problem (2.4) by leveraging the principle of optimality2. The

2 Note that the principle of optimality is
a fundamental property that is actually
utilized in almost all decision making
algorithms, including reinforcement
learning.

dynamic programming algorithm is given in Algorithm 1, where it can be seen
that a backward-in-time recursion is used and at each step a local optimization
is performed (this local optimization is referred to as the Bellman equation),
leveraging the optimal tail costs from the previous iteration.

The output of the dynamic programming algorithm is a set of costs J∗k (xk) for
each time step k = 0, . . . , N and states xk, which provide the optimal tail cost for
the tail subproblem.

4 markov decision processes, intro to rl

Figure 2.2: Suppose the optimal
paths from points c, d and e to
f are known (shown in red). By
using the principle of optimal-
ity, an optimal path from point
b to f can be found by only
searching over paths from b to
c, d, and e, and determining the
lowest cost from the candidates
{Jbc + J∗c f , Jbd + J∗d f , Jbe + J∗e f }.
In other words, the optimal tails
can be leveraged to reduce the
total number of paths that need
to be considered when finding
an optimal path from b to f !

Algorithm 1: Dynamic Programming (Deterministic)

J∗N(xN) = gn(xN), for all xN

for k = N − 1 to 0 do
J∗k (xk) = min

uk∈U (xk)
gk(xk, uk) + J∗k+1(fk(xk, uk)), for all xk

return J∗0 (·), . . . , J∗N(·)

Given an initial condition x0, the optimal control sequence {u∗
0 , . . . , u∗

N−1}
that solves the deterministic decision making problem can be computed with a
“forward pass”, where:

u∗
0 = arg min

u0∈U (x0)

g0(x0, u0) + J∗1 (f0(x0, u0)).

The next state is then computed as x∗1 = f0(x0, u∗
0), and the process is repeated:

u∗
1 = arg min

u1∈U (x∗1)
g1(x∗1 , u1) + J∗2 (f1(x∗1 , u1)),

until the full trajectory and optimal control is specified.
Note that in practice the DP algorithm is not practical for continuously val-

ues states x, since an infinite number of states would have to be iterated over.
Therefore one possible modification to handle continuously valued states is to
quantize the state space into a finite set of states (other approaches, such as in-
terpolation, are also possible). Also, it is interesting to note that the addition
of control constraints can actually simplify the procedure, since it restricts the
number of possible options that need to be considered!

Example 2.1.1 (Deterministic Dynamic Programming). Consider the environ-
ment shown in Figure 2.3, where the goal is to start at point a and reach point
h while incurring the smallest cost. In this problem the state is represented as
the current location (i.e. a, b, etc.), and the control constraints are encoded by
the arrows indicating possible directions of travel (e.g. at point c it is possible to
either go right or up, but not down or left). The cost of traversing between two
points is also denoted in Figure 2.3.

principles of robot autonomy 5

Figure 2.3: A deterministic de-
cision making problem where
the goal is to move from point
a to point h while incurring the
minimal amount of cost. The
red path indicates the optimal
path. This problem is solved
by dynamic programming in
Example 2.1.1.

To implement the DP algorithm, the final point h is chosen as xN , and the DP
recursion begins with:

J∗N(h) = 0,

since there is no cost to stay at point h. Moving backward in time, it can be seen
that the possible states xN−1 that can transition to xN = h are the points h, e,
and g (assuming it is possible to stay at h with no cost). Therefore in the first
step of the DP recursion:

J∗N−1(h) = 0 + J∗N(h) = 0, u∗
N−1(h) = stay.

J∗N−1(e) = 8 + J∗N(h) = 8, u∗
N−1(e) = right,

J∗N−1(g) = 2 + J∗N(h) = 2, u∗
N−1(g) = up,

Note that J∗k (h) = 0 for all k ≤ N, and therefore it will not be explicitly included
in the following steps. In the next step:

J∗N−2(e) = 8 + J∗N−1(h) = 8, u∗
N−2(e) = right,

J∗N−2(g) = 2, u∗
N−2(g) = up,

J∗N−2(d) = 3 + J∗N−1(e) = 11, u∗
N−2(d) = right,

J∗N−2(f) = 3 + J∗N−1(g) = 5, u∗
N−2(f) = right,

At this point, these optimal tail costs can be considered to be the optimal costs
associated with control actions that lead from e, g, d, or f to the end point h in
two steps! Continuing on:

J∗N−3(e) = min{8 + J∗N−2(h), 2 + J∗N−2(f)} = 7, u∗
N−3(e) = down,

J∗N−3(g) = 2, u∗
N−3(g) = up,

J∗N−3(d) = 3 + J∗N−2(e) = 11, u∗
N−3(d) = right,

J∗N−3(f) = 5, u∗
N−3(f) = right,

J∗N−3(a) = 8 + J∗N−2(d) = 19, u∗
N−3(a) = right,

J∗N−3(c) = min{5 + J∗N−2(d), 3 + J∗N−2(f)} = 8, u∗
N−3(c) = right.

6 markov decision processes, intro to rl

Interestingly, it can be seen that it is now possible to accomplish the objective
(i.e. go from point a to h) in 3 time steps (i.e. on path a − d − e − h) and incur an
optimal cost of 19. However it turns out that an even lower cost is achievable if
the number of time steps is increased further! Continuing the DP recursion:

J∗N−4(e) = 7, u∗
N−4(e) = down,

J∗N−4(g) = 2, u∗
N−4(g) = up,

J∗N−4(d) = 3 + J∗N−3(e) = 10, u∗
N−4(d) = right,

J∗N−4(f) = 5, u∗
N−4(f) = right,

J∗N−4(a) = 8 + J∗N−3(d) = 19, u∗
N−4(a) = right

J∗N−4(c) = min{5 + J∗N−3(d), 3 + J∗N−3(f)} = 8, u∗
N−4(c) = right,

J∗N−4(b) = 9 + J∗N−3(c) = 17, u∗
N−4(b) = right,

and finally with one more iteration:

J∗N−5(e) = 7, u∗
N−5(e) = down,

J∗N−5(g) = 2, u∗
N−5(g) = up,

J∗N−5(d) = 10, u∗
N−5(d) = right,

J∗N−5(f) = 5, u∗
N−5(f) = right,

J∗N−5(a) = min{8 + J∗N−4(d), 5 + J∗N−4(b)} = 18, u∗
N−5(a) = right

J∗N−5(c) = min{5 + J∗N−4(d), 3 + J∗N−4(f)} = 8, u∗
N−5(c) = right,

J∗N−5(b) = 9 + J∗N−4(c) = 17, u∗
N−5(b) = right.

Additional iterations are not included in this example because the costs and
optimal decisions will no longer change with longer horizons (see for yourself!).
Therefore it can be seen that with a sufficiently long horizon (N ≥ 5), the opti-
mal path from a to h is a − d − e − f − g − h and incurs a cost of 18. Note that
this process has actually given a lot more information than what was originally
asked for. In particular, given any starting point and any horizon it is straight-
forward to generate an optimal control sequence! For example, if you wanted to
start at point c and get to h in N = 3 steps you could immediately see that the
optimal path is c − f − g − h and the optimal cost is 8.

2.2 Stochastic Decision Making Problem

In the stochastic decision making problem it is assumed that there is some un-
certainty in the robot’s behavior or in the environment. This uncertainty is cap-
tured in the stochastic discrete-time robot model:

xk+1 = fk(xk, uk, wk), k = 0, . . . , N − 1, (2.5)

where wk represents a stochastic disturbance term. Additionally, it is assumed
that this disturbance has a known conditional probability distribution Pk(wk |

principles of robot autonomy 7

xk, uk). Note that it is assumed that the disturbance is only dependent on the
current state xk and control uk, and not states from earlier in the robot’s history.

Another main difference between the stochastic decision making problem
and the deterministic problem is that a control policy is computed in the stochas-
tic case. A control policy, usually denoted u = π(x), is a function that maps the
state x to a control u, and therefore defines a closed-loop controller (whereas
in the deterministic setting an open-loop sequence was computed). Generally
speaking, the search for control policies makes the problem more difficult to
solve, but is typically required in stochastic settings because uncertainty would
lead to undesirable behavior under open-loop control plans. Specifically, in the
stochastic decision making problem the policies π = {π0, . . . , πN−1} are com-
puted, which define the controls by uk = πk(xk).

Of course the cost function is also modified to handle the uncertainty. In
particular, a risk-neutral formulation is used (i.e. minimize the cost on average),
where the cost is defined by the expected value:

Jπ(x0) = Ew
[
gN(xN) +

N−1

∑
k=0

gk(xk, πk(xk), wk)
]
, (2.6)

where the expectation is over the stochastic variables w. The stochastic decision
making problem can now be stated as:

Definition 2.2.1 (Stochastic Decision Making Problem). The stochastic decision
making problem can be expressed for the system model (2.5), control constraints (2.2),
and cost function (2.6) as:

J∗(x0) = min
π

Jπ(x0). (2.7)

2.2.1 Principle of Optimality (Stochastic)

The principle of optimality can again be applied in the stochastic setting, and
the intuition is identical to the deterministic case (however the proof is slightly
different because the reasoning is in terms of probability distributions). The
principle of optimality in the stochastic setting is stated formally as:

Theorem 2.2.2 (Principle of Optimality (Stochastic)). Let π∗ = {π∗
0 , π∗

1 . . . , π∗
N−1}

be an optimal policy for the stochastic decision making problem (2.7), and assume the
state xk is reachable. Then, the tail policy sequence {π∗

k , . . . , π∗
N−1} is an optimal policy

sequence when starting from xk to minimize the cost from time k to time N.

Again, by leveraging the principle of optimality the decision making problem
can be simplified to making immediate decisions by concatenating optimal tail
policies.

2.2.2 Dynamic Programming (Stochastic)

The dynamic programming algorithm for the stochastic setting is also quite
similar to DP for deterministic problems, and is given in Algorithm 2. Once

8 markov decision processes, intro to rl

Algorithm 2: Dynamic Programming (Stochastic)

JN(xN) = gn(xN), for all xN

for k = N − 1 to 0 do
Jk(xk) = min

uk∈U (xk)
Ewk

[
gk(xk, uk, wk) + Jk+1(fk(xk, uk, wk))

]
, for all xk

return J0(·), . . . , JN(·)

Algorithm 2 is run, the optimal policy is defined by:

π∗
k (xk) = arg min

uk∈U (xk)

Ewk

[
gk(xk, uk, wk) + Jk+1(fk(xk, uk, wk))

]
.

Example 2.2.1 (Stochastic Dynamic Programming). Consider an inventory
control problem, where the available stock of a particular item is the state xk ∈
N, the ability to add to the inventory is the control uk ∈ N, and the demand for
the item is a stochastic variable wk ∈ N. The dynamics of the available stock is
modeled as:

xk+1 = max{0, xk + uk − wk},

which models the fact that demand reduces available stock but can also never
be negative. Additionally, consider the control constraints:

xk + uk ≤ 2,

which limits the amount of additional inventory that can be added based on the
current available stock to ensure that xk ≤ 2. The demand wk is assumed to be
modeled probabilistically with a distribution:

p(wk = 0) = 0.1, p(wk = 1) = 0.7, p(wk = 2) = 0.2.

Finally, the cost is given for a horizon of N = 3 as:

E
[2

∑
k=0

uk + (xk + uk − wk)
2],

which penalizes ordering new stock at each time step and also having available
stock at the next time step (i.e. having to store stock).

The dynamic programming algorithm can then be applied, starting with the
end costs:

J3(x3) = 0,

and then recursively computing:

J2(0) = min
u2∈{0,1,2}

E
[
u2 + (u2 − w2)

2] = min
u2∈{0,1,2}

u2 + 0.1u2
2 + 0.7(u2 − 1)2 + 0.2(u2 − 2)2 = 1.3,

J2(1) = min
u2∈{0,1}

E
[
u2 + (1 + u2 − w2)

2] = 0.3,

J2(2) = E
[
(2 − w2)

2] = 1.1,

principles of robot autonomy 9

where the last cost is easily evaluated since the constraint makes u2 = 0 the only
feasible choice. The optimal stage policies associated with this step are:

π∗
2 (0) = 1,

π∗
2 (1) = 0,

π∗
2 (2) = 0.

In the next step:

J1(0) = min
u1∈{0,1,2}

E
[
u1 + (u1 − w1)

2 + J2(max{0, u1 − w1})
]
= 2.5,

J1(1) = min
u1∈{0,1,}

E
[
u1 + (1 + u1 − w1)

2 + J2(max{0, 1 + u1 − w1})
]
= 1.5,

J1(2) = E
[
(2 − w1)

2 + J2(max{0, 2 − w1})
]
= 1.68,

with optimal stage policies:

π∗
1 (0) = 1,

π∗
1 (1) = 0,

π∗
1 (2) = 0.

Finally, in the last step:

J0(0) = min
u0∈{0,1,2}

E
[
u0 + (u0 − w0)

2 + J1(max{0, u0 − w0})
]
= 3.7,

J0(1) = min
u0∈{0,1,}

E
[
u0 + (1 + u0 − w0)

2 + J1(max{0, 1 + u0 − w0})
]
= 2.7,

J0(2) = E
[
(2 − w0)

2 + J1(max{0, 2 − w0})
]
= 2.818,

with optimal stage policies:

π∗
0 (0) = 1,

π∗
0 (1) = 0,

π∗
0 (2) = 0.

Interestingly, the best scenario occurs with an initial stock of one, rather than
have no stock or too much stock. Also, the policy ends up being the same at all
time steps: if you have no stock you add one item, otherwise you do nothing.

2.3 Challenges and Extensions of Dynamic Programming

Dynamic programming is a powerful algorithm, but suffers from several practi-
cal considerations: the “curse of dimensionality”, the “curse of modeling”, and
the “curse of time”. The curse of dimensionality arises because of an exponen-
tial growth of the computational and storage requirements based on the dimen-
sion of the state. For example if the state has dimension one (i.e. x ∈ R) and
can take on 100 different values, then at each step of the algorithm the Bellman
equation must be solved 100 times. While this may be possible from a practical

10 markov decision processes, intro to rl

perspective, if x ∈ R3 this would lead to 1003 solves of the Bellman equation!
Additionally, extensions to the problems presented in this chapter where the full
state is not known (e.g., because you can only measure some parts of the state),
the problem also become intractable. The curse of modeling results from the
complexity of modeling stochastic systems. In particular, it can be very hard to
obtain expressions for transition probabilities for real world systems! Lastly, the
curse of time is that the data of the problem may not be known ahead of time
(such that the DP algorithm can be run offline). Therefore it may be required
to solve the DP algorithm online when the data becomes available, or when the
data changes and the problem needs to be resolved.

2.3.1 Reinforcement Learning

The practical challenges related to dynamic programming motivated the de-
velopment of suboptimal dynamic programming approaches, which more com-
monly are referred to as reinforcement learning approaches. The goal of these
approaches is to make approximations to the original problem that make it more
practical for specific settings, such as with high-dimensional states, when the
model is not known, and more. Broadly speaking, there are two main cate-
gories of approximations. The first category includes approximations in the
value space (i.e. where the optimal cost function is approximated). The second
category includes approximations in the policy space (i.e. where the policy is
approximated by a neural network whose weights are optimized over).

