Principles of Robot Autonomy II

Imitation Learning
Today’s itinerary

• Intro to Imitation Learning

• Behavioral Cloning

• Imitation Learning with Interactive Experts

• Inverse RL (MMP, Max Ent IRL)

• Learning from other sources of data (preferences, physical feedback)
Today’s itinerary

• Intro to Imitation Learning

• Behavioral Cloning

• Imitation Learning with Interactive Experts

• Inverse RL (MMP, Max Ent IRL)

• Learning from other sources of data (preferences, physical feedback)
Imitation Learning in a Nutshell

• **Given:** Demonstrations or Demonstrator
• **Goal:** Train a policy to mimic demonstrations
Ingredients of Imitation Learning

Demonstrator or Demonstrations

Environment/Simulator

Policy Class

Loss Function

Learning Algorithm
Why Imitation Learning?

For the Sake of Robot Learning:

• It is difficult to learn from sparse rewards (unless data is cheap and you don’t care about seeing lots of failures).

• Hand-designing rewards is hard.
Just design the right reward function

\[R_H(s) \]

\[a^*_R = \arg\max_{a_R} R_H(s) \]
Why Imitation Learning?

For the Sake of Robot Learning:

• It is difficult to learn from sparse rewards (unless data is cheap and you don’t care about seeing lots of failures).
• Hand-designing rewards is hard.

For the Sake of Learning Human Models:

• Learning human’s intents, preferences, and underlying reward functions.
Problem Setup

MDP with no reward functions:

- State space, S (sometimes partially observable)
- Actions space, A
- An expert policy π^* that maps states to distributions over actions: $\pi^*(s) \rightarrow P(s)$
- Transition model $P(s_{t+1}|s_t, a_t)$: simulator or environment

Goal: Learn an imitating policy $\pi_\theta(s)$ that imitates the expert demonstrations
Problem Setup

Rollout: Sequentially execute $\pi(s_0)$ on an initial state
- produce trajectory: $\tau = (s_0, a_0, s_1, a_1, ...)$.

$P(\tau|\pi)$: Distribution of trajectories induced by a policy
1. Sample s_0 from P_0 (distribution over initial states).
2. Initialize $t = 1$. Sample action a_i from $\pi(s_{t-1})$.
3. Sample next state s_t from applying a_t to s_{t-1} (requires access to environment).
4. Repeat form step 2 with $t = t + 1$.

$P(s|\pi)$: Distribution of States induced by a policy
- Let $P_t(s|\pi)$ denote distribution over t-th state.
- $P(s|\pi) = \frac{1}{T} \sum_t P_t(s|\pi)$
Example: Racing Game

\(s = \) game screen
\(a = \) turning angle

Training set: \(D = \{ \tau = \{(s_i, a_i)\} \} \) from \(\pi^* \)

Goal: Learn \(\pi_\theta(s) \to a \)
Today’s itinerary

• Intro to Imitation Learning

• Behavioral Cloning

• Imitation Learning with Interactive Experts

• Inverse RL (MMP, Max Ent IRL)

• Learning from other sources of data (preferences, physical feedback)
Behavioral Cloning (reduction to supervised learning)

Define $P^* = P(s|\pi^*)$ (distribution of states visited by the expert)

(Recall $P(s|\pi^*) = \frac{1}{T} \sum_t P_t(s|\pi^*)$)

(sometimes abuse notation: $P^* = P(s, a^* = \pi^*(s)|\pi^*)$)

Learning Objective:

$$\arg \min_{\theta} \mathbb{E}_{(s,a^*) \sim P^*} L(a^*, \pi_{\theta}(s))$$

Interpretations:

1. Assuming perfect imitation so far, learn to continue imitating perfectly
2. Minimize 1-step deviation error along the expert trajectories
Behavioral Cloning: ALVINN

Learning Objective:

\[
\begin{align*}
\arg\min_\theta \mathbb{E}_{(s,a^*) \sim P} & L(a^*, \pi_\theta(s)) \\
= & \arg\min_\theta \mathbb{E}_{(s,a^*) \sim P} KL(a^*, \pi_\theta(s))
\end{align*}
\]

(General) Imitation Learning vs Behavioral Cloning

• Behavioral Cloning (supervised learning):

\[
\arg \min_{\theta} \mathbb{E}_{(s,a^{*}) \sim P^*} L(a^{*}, \pi_{\theta}(s))
\]
Distribution provided exogenously

• (General) Imitation Learning:

\[
\arg \min_{\theta} \mathbb{E}_{S \sim P(S|\theta)} L(\pi^{*}(s), \pi_{\theta}(s))
\]
Distribution depends on the rollout
\[
P(S|\theta) = \text{state distribution of } \pi_{\theta}
\]
What can go wrong?

Errors in supervised learning:
- Assume *independent and identically distributed* (IID) state, action pairs, then if we have error at time t with probability ϵ, then over a time period the error would be bounded by ϵT in expectation.

In imitation learning, the state distribution of our data depends on the choice of actions.

End up in states that you have not seen before...

... compounding errors

During training:
\[
s \sim P^*
\]

In test time:
\[
s \sim P(s|\pi_\theta)
\]
Limitations of Behavioral Cloning: Compounding Errors

\(\pi_\theta \) makes a mistake
New state sampled not from \(P^* \)!
Worst case is catastrophic!
Cannot recover from new states
When to Use Behavioral Cloning?

Advantages:
- Simple
- Efficient

Disadvantages:
- Distribution mismatch between training and testing
- No long-term planning

Use When:
- 1-step deviations not too bad!
- Learning reactive behaviors
- Expert trajectories “cover” state space

Don’t Use When:
- 1-step deviations can lead to catastrophic error
- Optimizing long-term objective (at least not without a stronger model)
Types of Imitation Learning

Behavioral Cloning

\[
\arg \min_\theta \mathbb{E}_{(s,a^*) \sim P^*} L(a^*, \pi_\theta(s))
\]

Works well when \(P^* \) is close to \(P_\theta \)

Direct Policy Learning (via Interactive Demonstrator)

Requires Interactive Demonstrator (BC is a 1-step special case)

Inverse RL

Learn \(r \) such that:

\[
\pi^* = \arg \max_\theta \mathbb{E}_{s \sim P(S|\theta)} r(s, \pi_\theta(s))
\]

Assume learning \(r \) is statistically easier than directly learning \(\pi^* \)
Types of Imitation Learning

<table>
<thead>
<tr>
<th></th>
<th>Direct Policy Learning</th>
<th>Reward Learning</th>
<th>Access to Environment</th>
<th>Interactive Demonstrator</th>
<th>Pre-collected Demonstrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behavioral Cloning</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Direct Policy Learning (interactive IL)</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Optional</td>
</tr>
<tr>
<td>Inverse Reinforcement Learning</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Today’s itinerary

- Intro to Imitation Learning
- Behavioral Cloning
- Imitation Learning with Interactive Experts
- Inverse RL (MMP, Max Ent IRL)
- Learning from other sources of data (preferences, physical feedback)
Interactive Direct Policy Learning

Behavioral Cloning is simplest example

Beyond BC: using interactive demonstrator

Often analyzed via learning reductions
 • Reduced “harder” learning problem to “easier” one
 • Imitation Learning \rightarrow Supervised Learning
Learning Reductions

Behavioral Cloning:

\[
\mathbb{E}_{s \sim p(s|\theta)} L(a^*(s), \pi_\theta(s)) \rightarrow \mathbb{E}_{(s,a^*) \sim P^*} L(a^*, \pi_\theta(s))
\]

A: General Imitation Learning
B: Behavioral Cloning

What does learning well on B imply about A?
- e.g., can one lift PAC learning results from B to A?
Direct Policy Learning via Interactive Expert (sequential learning reductions)

Sequence of distributions (sequence of supervised learning problems)

- $\mathbb{E}_{S \sim P(m)} L(\pi^*(S), \pi_\theta(S))$
- Ideally converges to π_{OPT} (best in policy class)

Usually start from:

- $\mathbb{E}_{S \sim P} L(\pi^*(S), \pi_\theta(S))$

Requires Interactive Demonstrator (BC is a 1-step special case)
Interactive Expert

Can query expert at any state
Construct loss function: $L(\pi^*(s), \pi(s))$

• Typically applied to rollout trajectories of policies we are training: $s \sim P(s|\pi)$

• Driving example: $L(\pi^*(s), \pi(s)) = (\pi^*(s) - \pi(s))^2$

Expert provides feedback on state visited by policy
Alternating Optimization (Naïve Attempt)

1. Fix P, estimate π
 • Solve $\arg\min_\theta \mathbb{E}_{s \sim p} L(\pi(s), \pi_\theta(s))$

2. Fix π, estimate P
 • Empirically estimate via rolling out π

3. Repeat

Not guaranteed to converge!
Sequential Learning Reductions

• Initial predictor: π_0 (initial predictor: initial expert demonstrations)

• For m sequence of predictors (initialize $m=1$)
 - Collect trajectories τ via rolling out π_{m-1} (typically rollout multiple times)
 - Estimate state distribution P_m using $s \in \tau$
 - Collect interactive feedback $\{\pi^*(s) | s \in \tau\}$ (requires interactive expert)

- **Data Aggregation** (e.g., DAgger)
 - Train π_m on $P_1 \cup \cdots \cup P_m$

- **Policy Aggregation** (e.g., SEARN & SMILe)
 - Train intermediate policy π'_m on only P_m
 - $\pi_m = \beta \pi'_m + (1 - \beta)\pi_{m-1}$ (geometric blending of policies)
DAgger in Practice
Direct Policy Learning via Interactive Expert

Reduction to sequence of supervised learning problems
 • Constructed from rollouts from previous policies
 • Requires interactive expert feedback

Two approaches: Data Aggregation & Policy Aggregation
 • Ensure convergence
 • Motivated by different theory

Not covered:
 • What is expert feedback and loss function? (depends on application)
Application of DAgger: Negotiation Domain

Shared Items i

1 2 2
Application of DAgger: Negotiation Domain
Application of DAgger: Negotiation Domain

Bob's Utility u_B
- 0 books, 1
- 4 hats, 4
- 1 balls

Alice's Utility u_A
- 2 books, 2
- 3 hats, 3
- 1 balls

Shared Items i
1 book, 2 hats, 2 balls

Bob proposes (0 books, 2 hats, 2 balls)
Application of DAgger: Negotiation Domain

Bob’s Utility u_B
- Book: 0
- Hat: 4
- Ball: 1

Alice’s Utility u_A
- Book: 2
- Hat: 3
- Ball: 1

Shared Items i
- Book: 1
- Hat: 2
- Ball: 2

Alice
- Agreed

Bob
- Proposed: 0 books, 2 hats, 2 balls

Supervised Learning
Application of DAgger: Negotiation Domain

Bob's Utility u_B

- Book: 0
- Hat: 4
- Ball: 1

Alice's Utility u_A

- Book: 2
- Hat: 3
- Ball: 1

Bob proposes: (0 books, 2 hats, 2 balls)

Alice agrees:

Bob insists: (1 book, 2 hats, 2 balls)
Application of DAgger: Negotiation Domain

Shared Items i

- 1 book
- 2 hats
- 2 balls

Bob

propose(0 books, 2 hats, 2 balls)

Alice

Agree

Supervised Learning

Targeted Acquisition

Reinforcement Learning

Bob’s Utility u_B

- 0 book
- 4 hats
- 1 ball

Alice’s Utility u_A

- 1 book
- 3 hats
- 1 ball
Optimal Dialogue Acts

Targeted Acquisition

\(\phi_1 \)

\(\phi_2 \)

SL

RL

RL+SL
Targeted Data Acquisition Framework

Alice RL Training

- `propose(0 books, 2 hats, 2 balls)`

Alice

- `insist(1 book, 2 hats, 2 balls)!`

Negotiation n

Bob

- *This looks novel!*
Targeted Data Acquisition Framework

\[
\sum_{x_t \in X^A} p_{\theta}(x_t | x_{0:t-1}, c^A)
\]

Alice RL Training
- propose(0 books, 2 hats, 2 balls)

Alice
- insist(1 book, 2 hats, 2 balls)!

Bob
- This looks novel!
Targeted Data Acquisition Framework

Flag negotiation n

Alice RL Training

Bob

- propose(0 books, 2 hats, 2 balls)

Alice

- insist(1 book, 2 hats, 2 balls)!

Bob

- This looks novel!

Negotiation n

$$\sum_{x_t \in X_A} p_\theta(x_t | x_{0:t-1}, c^A)$$

Expert Annotation

Bob

- propose(0 books, 2 hats, 2 balls)

Alice

- insist(1 book, 2 hats, 2 balls)!

Expert

- end
Targeted Data Acquisition Framework

Alice RL Training

propose(0 books, 2 hats, 2 balls)

insist(1 book, 2 hats, 2 balls)!

This looks novel!

Expert Annotation

propose(0 books, 2 hats, 2 balls)

insist(1 book, 2 hats, 2 balls)!

end

Update Dataset
$\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}'$

Bob SL Training

Flag negotiation n

$\sum_{x_t \in X^A} p_\theta(x_t|x_{0:t-1}, c^A)$
Targeted Data Acquisition Framework

Alice RL Training
- **propose**: (0 books, 2 hats, 2 balls)
- **insist**: (1 book, 2 hats, 2 balls)!

Expert Annotation
- **propose**: (0 books, 2 hats, 2 balls)
- **insist**: (1 book, 2 hats, 2 balls)!

Update Dataset
\[\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}' \]

Bob SL Training

\[
\sum_{x_t \in X^A} p_{\theta}(x_t | x_{0:t-1}, c^A)
\]

Continue Training Alice

Flag negotiation \(n \)
Example Negotiation with a Human

<table>
<thead>
<tr>
<th>Ours</th>
<th>RL</th>
<th>RL+SL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human: propose: item0=1 item1=2 item2=1</td>
<td>Human: propose: item0=2 item1=2 item2=1</td>
<td>Alice: propose: item0=2 item1=0 item2=1</td>
</tr>
<tr>
<td>Alice: propose: item0=1 item1=1 item2=1</td>
<td>Alice: propose: item0=2 item1=1 item2=1</td>
<td>Human: propose: item0=2 item1=3 item2=1</td>
</tr>
<tr>
<td>Human: agree</td>
<td>Human: agree</td>
<td>Alice: agree</td>
</tr>
<tr>
<td>Alice: agree</td>
<td>Alice: <selection></td>
<td>Human: agree</td>
</tr>
<tr>
<td>Human: book=1 hat=2 ball=0</td>
<td>Human: book=0 hat=2 ball=0</td>
<td>Alice: item0=0 item1=0 item2=0</td>
</tr>
<tr>
<td>Alice: item0=1 item1=1 item2=1</td>
<td>Alice: item0=2 item1=1 item2=1</td>
<td>Human: book=2 hat=3 ball=1</td>
</tr>
<tr>
<td>Agreement!</td>
<td>Agreement!</td>
<td>Agreement!</td>
</tr>
<tr>
<td>Alice : 8 points</td>
<td>Alice : 10 points</td>
<td>Alice : 0 points</td>
</tr>
<tr>
<td>Human : 6 points</td>
<td>Human : 4 points</td>
<td>Human : 10 points</td>
</tr>
</tbody>
</table>

Alice : book=(count:2 value:2) hat=(count:3 value:0) ball=(count:1 value:6)
Human : book=(count:2 value:2) hat=(count:3 value:2) ball=(count:1 value:0)
Today’s itinerary

• Intro to Imitation Learning
• Behavioral Cloning
• Imitation Learning with Interactive Experts
• Inverse RL (MMP, Max Ent IRL)
• Learning from other sources of data (preferences, physical feedback)
Types of Imitation Learning

Behavioral Cloning

\[
\arg \min_{\theta} \mathbb{E}_{(s,a^*) \sim p^*} L(a^*, \pi_\theta(s))
\]

Works well when \(P^* \) is close to \(P_\theta \)

Direct Policy Learning (via Interactive Demonstrator)

Requires Interactive Demonstrator (BC is a 1-step special case)

Inverse RL

Learn \(r \) such that:

\[
\pi^* = \arg \max_{\theta} \mathbb{E}_{s \sim P(s \mid \theta)} r(s, \pi_\theta(s))
\]

Assume learning \(r \) is statistically easier than directly learning \(\pi^* \)
What can go wrong with policy learning?

Behavioral cloning: mimics the expert directly
- No reasoning about outcomes or dynamics
- No notion of intentions
- Expert can be suboptimal
- Expert might have different embodiments
- Safety and Robustness
History of Inverse Reinforcement Learning

- 1964: Kalman posed the inverse optimal control problem and solved it in 1D
- 1994: Boyd et al. A linear matrix inequality (LMI) characterization for the linear quadratic setting
- 2000: Ng, Russell. Proposed the first MDP formulation and issues around reward function ambiguity
- 2004: Abbeel, Ng. Inverse RL with feature matching for apprenticeship learning
- 2006: Ratliff et al. Max Margin Planning (MMP) Formulation
- 2008: Zeibart et al. Max Entropy Formulation

- Since then... Active Inverse RL, Integration with other types of data, Iterative approaches to update Reward and Policy (GAIL, etc.), images as inputs, etc.
Apprenticeship Learning

[Abbeel, Ng, 2004]
Problem Setup: Behavioral Cloning

MDP with no reward functions:
- State space, S (sometimes partially observable)
- Actions space, A
- An expert policy π^* that maps states to distributions over actions: $\pi^*(s) \rightarrow P(s)$
- Transition model $P(s_{t+1}|s_t, a_t)$: simulator or environment

Goal: Learn an imitating policy $\pi_\theta(s)$ that imitates the expert demonstrations
Problem Setup: Inverse RL

MDP with no reward functions:
- State space, S (sometimes partially observable)
- Actions space, A
- An expert policy π^* that maps states to distributions over actions: $\pi^*(s) \rightarrow P(s)$
- Transition model $P(s_{t+1}|s_t, a_t)$: simulator or environment

Goal: Learn an imitating policy $\pi_{\theta}(s)$ that imitates the expert demonstrations

Goal: Learn a reward function assuming the experts are optimal
Inverse Reinforcement Learning

Assume the reward function is a linear combination of features:

$$R(s) = w^T \varphi(s)$$

$$w \in \mathbb{R}^n$$

$$\varphi: S \rightarrow \mathbb{R}^n$$

(a) Features for the boundaries of the road
(b) Feature for staying inside the lanes.
(c) Features for avoiding other vehicles.
Inverse Reinforcement Learning

Assume the reward function is a linear combination of features:

\[R(s) = w^T \varphi(s) \quad w \in \mathbb{R}^n \quad \varphi: S \to \mathbb{R}^n \]

The goal is to recover the weights: \(w \)

\[
\begin{align*}
V^\pi(s) &= \mathbb{E}_\pi \left[\sum_{t=0}^{\infty} \gamma^t R(s_t) \right] \\
&= \mathbb{E}_\pi \left[\sum_{t=0}^{\infty} \gamma^t w^T \varphi(s_t) \right] = w^T \mathbb{E}_\pi \left[\sum_{t=0}^{\infty} \gamma^t \varphi(s_t) \right] = w^T \mu(\pi)
\end{align*}
\]
How to deal with reward ambiguity?

Reward ambiguity: There are many reward functions under which the expert demonstrations are optimal!!
How to deal with reward ambiguity?

Reward ambiguity: There are many reward functions under which the expert demonstrations are optimal!!

Which reward function should we pick?

- **Maximum Margin Planning:** Looks for the one that separates the optimal policy best.
Aside: Maximum Margin Classifiers

Given a training dataset of \((x_1, y_1), \ldots, (x_n, y_n)\), where \(y_i\) is either 1 or -1 identifying the class \(x_i\) is in. We want to find the maximum margin hyperplane that divides the points so the distance between the hyperplane and the nearest point from each class is maximized.

"Minimize \(\|\vec{w}\|\) subject to \(y_i(\vec{w} \cdot \vec{x}_i - b) \geq 1\), for \(i = 1, \ldots, n\)"
How to deal with reward ambiguity?

Reward ambiguity: There are many reward functions under which the expert demonstrations are optimal!!

Which reward function should we pick?

- **Maximum Margin Planning**: Looks for the one that separates the optimal policy best.

- **Maximum Entropy IRL**: Looks for the one where expert demonstrations are drawn from a high entropy distribution.