Principles of Robot Autonomy ||

Course overview and intro to

machine learning for robot autonomy

®iiad G

(%)) Stanford

&%/ University



Team

Instructors

Marco Pavone Dorsa Sadigh

Jeannette Bohg

Assistant Associate Assistant
Professor CS Professor AA, Professor CS
! and CS/EE (by and EE
| courtesy)
Tanmay Agarwal Abhyudit Manhas Claire Chen

CS 237B | Lecture 1 2



From automation...

oy B
< 2

1/7/24 CS 237B | Lecture 1 3



..fo autonomy

Zipline

1/7/24 CS 237B | Lecture 1 4



From Principles of Robot Autonomy |I:
the see-think-act cycle

Knowledge Mission goals

Localization | position Decision making

Map Building global map Motion planning
environmental model trajectory
local map
| v
Information > Trajectory
extraction execution
* 1
actuator
raw data commands

| See-think-act

Sensing Actuation

Real world
environment

1/7/24 CS 237B | Lecture 1 5



Outstanding questions and new trends

* How do we build models for complex tasks? Can we use data / prior
experience?

* How should the robot reason in terms of actively interacting with
the environment?

* And how should the robot reason when interacting with other
decision-making agents?
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Course goals

* Obtain a fundamental understanding of advanced principles of
robot autonomy, including;:
1. robotlearning
2. physical interaction with the environment
3. interaction with humans
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Course structure

* Three modules, roughly of equal length
1. learning-based control and perception
2. interaction with the physical environment
3. interaction with humans

* Requirements
« AA174A /AA274A / CS 237A / EE 260A
* CS 106A or equivalent, CS106B highly recommended
« CME 100 or equivalent (for linear algebra)
* CME 106 or equivalent (for probability theory)
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Logistics

* Lectures: Monday and Wednesday, 1:30pm - 2:50pm

* Information about office hours available in the Syllabus:
nttps://web.stanford.edu/class/cs237b/pdfs/syllabus.pdf

* Course websites:
 https://cs237b.stanford.edu (course content and announcements)
* https://canvas.stanford.edu/courses/182770 (course-related discussions)
* https://www.gradescope.com/courses/689252 (HW submissions)
 https://canvas.stanford.edu/courses/182770 (Panopto Course Videos)

* To contact the teaching staff, use the email: cs237b-win2324-
staff@lists.stanford.edu
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Grading and units

* Course grade calculation
* (60%) homework
* (40%) exams (for each student, the lowest exam grade will be dropped)
* (extra 5%) participation on EdStem

* Units: 3 or 4. Taking this class for 4 units entails additionally
presenting a paper at the end of the quarter
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Schedule

Date  Topic Assignment
01/08 Course Overview, Intro to ML for Robotics 02/19 President’s Day (no classes)
01/10 Neural Networks and TensorFlow Tutorial 02/21 Guest Lecture (TBD)
01/12 HWT1 out 02/23 Exam 2
01/15 Martin Luther King, Jr. Day (no classes) 02/26 Imitation Learning (2)
01/17 Markov Decision Processes 02/28 Learning from Human Feedback
01/22 Intro to RL 03/04 Interaction-Aware Learning, Planning, and Control
01/24 Model-based and Model-free RL for Robot Control 03/06 Shared Autonomy
01/29 Learning-based Perception 03/08 HWS3 due
01/31 Fundamentals of Grasping and Manipulation (1) 03/11  Guest Lecture (Sidd Karamcheti)
02/02 HW1 due, HW2 out 03/13 Paper Presentations
02/05 Fundamentals of Grasping and Manipulation (2) 03/15 Exam 3
02/07 Learning-based Grasping and Manipulation
02/09 Exam 1
02/12 Interactive Perception
02/14 Imitation Learning (1)
02/16 HW2 due, HW3 out
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Intro to Machine Learning (ML)

 Aim
* Present and motivate modern ML techniques

e Courses at Stanford

* EE 104: Introduction to Machine Learning
* CS229: Machine Learning

e Reference

 Hastie, Tibshirani, and Friedman: The elements of statistical learning: data
mining, inference, and prediction (2009). Available here:
https://web.stanford.edu/~hastie/ElemStatLearn/
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Machine learning

* Supervised learning (classification, regression)

- Given (z',y%),..., (2™, y"), choose a function f(x) =y
x; = data point

y; = class/value

* Unsupervised learning (clustering, dimensionality reduction)

» Given (z',z?%,...,2™) find patterns in the data
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Learning models

Parametric
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Loss functions

In selecting f(x) =~ y we need a quality metric, i.e., a loss function to minimize

* Regression * Classification
(% loss : Z]f(a:z) —y'f 0—1loss: Zl{f(x’) £ 9}

v 0

Cross entropy loss :
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Machine learning as optimization

How can we choose the best (loss minimizing) parameters to fit our
training data?*

Analytical solution Numerical optimization
_y% ZJ%_ _513% 5[5% T 513/1; (a11  ay2]
y% y% 37% 37% T xi a1 Qa2
T Ya 7 Ty - x| [ag1  apo]

fa(x) =xA, 1% loss
A=(XTX)"'XTy

(example: linear least squares)

(example: gradient descent)

* we’ll come back to worrying about test data
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Stochastic optimization

Our loss function is defined over the

: _ Stochasti
entire training dataset: ochastic
gradient
N i 2 _ 1 ¢ descent
L= [f@) =y =—> L \
=1 i=1 \
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-1000  -500 0 500 1000 1500 2000
0,

Computing VL could be very
computationally intensive. We
approximate:

Other
variants
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Regularization

To avoid overfitting on the training data, we may add additional
terms to the loss function to penalize “model complexity”

/? regularization: || A||» ¢* regularization: || A|;
often corresponds to a Gaussian prior often encourages sparsity in A
on parameters A (easier to interpret/explain)

Hyperparameter regularization:

KNN: K=1 KNN: K=10 KNN: K=100
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Generalizing linear models
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Feature extraction

vector describing various
image statistics

Human Feature f 10 numbers, indicating
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Next time

NNs and TensorFlow Tutorial
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