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From automation…

CS 237B | Lecture 1 31/7/24



…to autonomy
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From Principles of Robot Autonomy I:
the see-think-act cycle
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Outstanding questions and new trends

• How do we build models for complex tasks? Can we use data / prior 
experience?

• How should the robot reason in terms of actively interacting with 
the environment?

• And how should the robot reason when interacting with other 
decision-making agents?
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Course goals

• Obtain a fundamental understanding of advanced principles of 
robot autonomy, including:

1. robot learning
2. physical interaction with the environment
3. interaction with humans
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Course structure
• Three modules, roughly of equal length

1. learning-based control and perception
2. interaction with the physical environment
3. interaction with humans

• Requirements
• AA 174A / AA 274A / CS 237A / EE 260A
• CS 106A or equivalent, CS106B highly recommended
• CME 100 or equivalent (for linear algebra)
• CME 106 or equivalent (for probability theory)
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Logistics
• Lectures:  Monday and Wednesday, 1:30pm - 2:50pm
• Information about office hours available in the Syllabus: 

https://web.stanford.edu/class/cs237b/pdfs/syllabus.pdf
• Course websites: 
• https://cs237b.stanford.edu (course content and announcements)
• https://canvas.stanford.edu/courses/182770 (course-related discussions)
• https://www.gradescope.com/courses/689252 (HW submissions)
• https://canvas.stanford.edu/courses/182770 (Panopto Course Videos)

• To contact the teaching staff, use the email: cs237b-win2324-
staff@lists.stanford.edu
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Grading and units

• Course grade calculation
• (60%) homework
• (40%) exams (for each student, the lowest exam grade will be dropped)
• (extra 5%) participation on EdStem

• Units: 3 or 4. Taking this class for 4 units entails additionally 
presenting a paper at the end of the quarter
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Schedule
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Intro to Machine Learning (ML)

1/7/24

• Aim
• Present and motivate modern ML techniques

• Courses at Stanford
• EE 104: Introduction to Machine Learning
• CS 229: Machine Learning

• Reference
• Hastie, Tibshirani,  and Friedman: The elements of statistical learning: data 

mining, inference, and prediction (2009). Available here: 
https://web.stanford.edu/~hastie/ElemStatLearn/
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Machine learning
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• Supervised learning (classification, regression)

• Given                        , choose a function 

• Unsupervised learning (clustering, dimensionality reduction)

• Given find patterns in the data

f(x) = y(x1, y1), . . . , (xn, yn)

xi = data point

yi = class/value

(x1, x2, . . . , xn)
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Supervised learning
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• Regression • Classification
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Learning models
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k-Nearest NeighborsSpline fitting

Non-parametric 
models

Parametric 
models

Linear regression Linear classifier
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Loss functions
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• Regression • Classification
`2 loss :

X

i

|f(xi)� yi|2

`1 loss :
X

i

|f(xi)� yi|

In selecting                    we need a quality metric, i.e., a loss function to minimizef(x) ⇡ y

0� 1 loss :
X

i

1{f(xi) 6= yi}

Cross entropy loss : �
X

i

(yi)T log(f(xi))
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Machine learning as optimization
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How can we choose the best (loss minimizing) parameters to fit our 
training data?*

* we’ll come back to worrying about test data
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fA(x) = xA, `2 loss
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Analytical solution Numerical optimization

(example: linear least squares) (example: gradient descent)
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Stochastic optimization
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Our loss function is defined over the 
entire training dataset:

Computing          could be very 
computationally intensive. We 
approximate:

rL
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1

n

nX
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Stochastic 
gradient 
descent

Other 
variants
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Regularization
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To avoid overfitting on the training data, we may add additional 
terms to the loss function to penalize “model complexity”

`2 regularization: kAk2
often corresponds to a Gaussian prior 
on parameters A

`1 regularization: kAk1
often encourages sparsity in A 
(easier to interpret/explain)

Hyperparameter regularization:
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Generalizing linear models
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Linear regression/classification 
can be very powerful when 
empowered by the right features

Nonlinearity via basis functions Eigenfaces
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Feature extraction
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Human 
Ingenuity

Gradient 
Descent

CS 237B | Lecture 1 21



Next time
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NNs and TensorFlow Tutorial


