Principles of Robot Autonomy II

Course overview and intro to

machine learning for robot autonomy

Team

Instructors

Jeannette Bohg Assistant Professor CS

Marco Pavone Associate Professor AA, and CS/EE (by courtesy)

Dorsa Sadigh Assistant Professor CS and EE

<u>CAs</u>

Tanmay Agarwal

Abhyudit Manhas

Claire Chen

From automation...

...to autonomy

Waymo Self-Driving Car

Intuitive DaVinci Surgical Robot

Apollo Robot at MPI for Intelligent Systems

Astrobee - NASA

1/7/24

From Principles of Robot Autonomy I: the see-think-act cycle

Outstanding questions and new trends

- How do we build models for complex tasks? Can we use data / prior experience?
- How should the robot reason in terms of actively interacting with the environment?
- And how should the robot reason when interacting with other decision-making agents?

Course goals

- Obtain a fundamental understanding of *advanced* principles of robot autonomy, including:
 - 1. robot learning
 - 2. physical interaction with the environment
 - 3. interaction with humans

Course structure

- Three modules, roughly of equal length
 - 1. learning-based control and perception
 - 2. interaction with the physical environment
 - 3. interaction with humans
- Requirements
 - AA 174A / AA 274A / CS 237A / EE 260A
 - CS 106A or equivalent, CS106B highly recommended
 - CME 100 or equivalent (for linear algebra)
 - CME 106 or equivalent (for probability theory)

Logistics

- Lectures: Monday and Wednesday, 1:30pm 2:50pm
- Information about office hours available in the Syllabus: <u>https://web.stanford.edu/class/cs237b/pdfs/syllabus.pdf</u>
- Course websites:
 - <u>https://cs237b.stanford.edu</u> (course content and announcements)
 - <u>https://canvas.stanford.edu/courses/182770</u> (course-related discussions)
 - <u>https://www.gradescope.com/courses/689252</u> (HW submissions)
 - <u>https://canvas.stanford.edu/courses/182770</u> (Panopto Course Videos)
- To contact the teaching staff, use the email: <u>cs237b-win2324-</u> <u>staff@lists.stanford.edu</u>

Grading and units

- Course grade calculation
 - (60%) homework
 - (40%) exams (for each student, the lowest exam grade will be dropped)
 - (extra 5%) participation on EdStem
- Units: 3 or 4. Taking this class for 4 units entails additionally presenting a paper at the end of the quarter

Schedule

Date	Topic	Assignment			
$01/08 \\ 01/10 \\ 01/12$	Course Overview, Intro to ML for Robotics Neural Networks and TensorFlow Tutorial	HW1 out	$\begin{array}{c} 02/19 \\ 02/21 \\ 02/23 \end{array}$	President's Day (no classes) Guest Lecture (TBD)	Exam 2
$01/15 \\ 01/17$	Martin Luther King, Jr. Day (no classes) Markov Decision Processes		$02/26 \\ 02/28$	Imitation Learning (2) Learning from Human Feedback	
$01/22 \\ 01/24$	Intro to RL Model-based and Model-free RL for Robot Control		$\begin{array}{c} 03/04\\ 03/06\\ 03/08\\ \hline 03/11\\ 03/13\\ 03/15\\ \end{array}$	Interaction-Aware Learning, Planning, and Control Shared Autonomy	
$01/29 \\ 01/31 \\ 02/02$	Learning-based Perception Fundamentals of Grasping and Manipulation (1)	HW1 due, HW2 out		Guest Lecture (Sidd Karamcheti) Paper Presentations	HW3 due
$02/05 \\ 02/07 \\ 02/09$	Fundamentals of Grasping and Manipulation (2) Learning-based Grasping and Manipulation	Exam 1			Exam 3
$02/12 \\ 02/14 \\ 02/16$	Interactive Perception Imitation Learning (1)	HW2 due, HW3 out			

Intro to Machine Learning (ML)

• Aim

- Present and motivate modern ML techniques
- Courses at Stanford
 - EE 104: Introduction to Machine Learning
 - CS 229: Machine Learning
- Reference
 - Hastie, Tibshirani, and Friedman: The elements of statistical learning: data mining, inference, and prediction (2009). Available here: <u>https://web.stanford.edu/~hastie/ElemStatLearn/</u>

Machine learning

• Supervised learning (classification, regression)

• Given
$$(x^1, y^1), \ldots, (x^n, y^n)$$
, choose a function $f(x) = y$
 $x_i = \text{data point}$
 $y_i = \text{class/value}$

• Unsupervised learning (clustering, dimensionality reduction)

• Given
$$(x^1, x^2, \dots, x^n)$$
 find patterns in the data

Supervised learning

Regression

• Classification

Learning models

Parametric models

Non-parametric models

k-Nearest Neighbors

Loss functions

In selecting $f(x) \approx y$ we need a quality metric, i.e., a loss function to minimize

• Regression

$$\ell^2 \text{ loss}: \sum_i |f(x^i) - y^i|^2$$

 $\ell^1 \text{ loss}: \sum_i |f(x^i) - y^i|$

Classification

 $0 - 1 \text{ loss}: \sum_{i} \mathbf{1}\{f(x^{i}) \neq y^{i}\}$ Cross entropy loss: $-\sum_{i} (y^{i})^{T} \log(f(x^{i}))$

Machine learning as optimization

How can we choose the best (loss minimizing) parameters to fit our training data?*

Analytical solution $\begin{bmatrix} y_1^1 & y_2^1 \\ y_1^2 & y_2^2 \\ \vdots \\ y_1^n & y_2^n \end{bmatrix} \approx \begin{bmatrix} x_1^1 & x_2^1 & \cdots & x_k^1 \\ x_1^2 & x_2^2 & \cdots & x_k^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^n & x_2^n & \cdots & x_k^n \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \\ \vdots \\ a_{k1} & a_{k2} \end{bmatrix}$ $f_A(x) = xA, \quad \ell^2 \text{ loss}$ $\hat{A} = (X^T X)^{-1} X^T Y$ (example: linear least squares)

Numerical optimization

* we'll come back to worrying about test data

Stochastic optimization

Our loss function is defined over the entire training dataset:

$$L = \frac{1}{n} \sum_{i=1}^{n} \left| f(x^{i}) - y^{i} \right|^{2} = \frac{1}{n} \sum_{i=1}^{n} L_{i}$$

Computing ∇L could be very computationally intensive. We approximate:

$$\nabla L \approx \frac{1}{|S|} \sum_{i \in S \subset \{1, \dots, n\}} \nabla L_i$$

Regularization

To avoid overfitting on the training data, we may add additional terms to the loss function to penalize "model complexity"

 ℓ^2 regularization: $||A||_2$ often corresponds to a Gaussian prior

on parameters A

 ℓ^1 regularization: $||A||_1$

often encourages sparsity in *A* (easier to interpret/explain)

Hyperparameter regularization:

Generalizing linear models

Nonlinearity via basis functions

Linear regression/classification can be very powerful when empowered by the right features

Eigenfaces

Next time

NNs and TensorFlow Tutorial

