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Today’s itinerary

* Intro to Imitation Learning

Behavioral Cloning

* Imitation Learning with Interactive Experts

Inverse RL (MMP, Max Ent IRL)

e Learning from other sources of data (preferences, physical feedback)



Today’s itinerary

* Intro to Imitation Learning



Why Imitation Learning?

For the Sake of Robot Learning:

* It is difficult to learn from sparse rewards
(unless data is cheap and you don’t care
about seeing lots of failures).

* Hand-designing rewards is hard.
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Why Imitation Learning?

For the Sake of Robot Learning:

* It is difficult to learn from sparse rewards
(unless data is cheap and you don’t care
about seeing lots of failures).

* Hand-designing rewards is hard.

For the Sake of Learning Human Models:

* Learning human’s intents, preferences,
and underlying reward functions.
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Imitation Learning in a Nutshell

* Given: Demonstrations or Demonstrator
e Goal: Train a policy to mimic demonstrations

Expert Demonstrations State/Action Pairs Learning

Expert trajectory
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Ingredients of Imitation Learning

Demonstrator or Demonstrations Environment/Simulator Policy Class

Expert trajectory

hidden layer 1 hidden layer 2 hidden layer 3
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MDP with no reward functions:
- State space, S (sometimes partially observable)
- Actions space, A

- An expert policy ™ that maps states to distributions over
actions: m*(s) = P(s)

- Transition model P(s;,1|S¢, a;): simulator or environment

Goal: Learn an imitating policy Ty (s) that imitates the expert
demonstrations



Rollout: Sequentially execute (sg) on an initial state
- produce trajectory: T = (S, ag, S1, A1, -+ )-

P(t|m): Distribution of trajectories induced by a policy
1. Sample sy from Py (distribution over initial states).
2. Initialize t = 1. Sample action a; from w(s;_1).
3. Sample next state s; from applying a; to s;_; (requires access to environment).
4. Repeat form step 2 witht =t + 1.

P(s|m): Distribution of States induced by a policy
- Let P,(s|m) denote distribution over t-th state.

- P(s|m) = 2 % Pe(s|m)



S = game screen
a = turning angle

Training set: D = {t = {(s;,a;)}} from "

Goal: Learn mg(s) — a

Credit: images from Stephan Ross



Today’s itinerary

* Intro to Imitation Learning

* Behavioral Cloning



Behavioral Cloning (reduction to supervised learning)

Define P* = P(s|m™) (distribution of states visited by the expert)

(Recall P(s|t*) = %ZtPt(sln*))

(sometimes abuse notation: P* = P(s,a” = n"(s)|n"))

Learning Objective:
arg mein E(s,a~pL(a%, o (s))

Interpretations:
1. Assuming perfect imitation so far, learn to continue imitating perfectly

2. Minimize 1-step deviation error along the expert trajectories



Behavioral Cloning: ALVINN

Learning Objective: Rosd Intensiy 45 Direction

Feedback Un:t Ouwcput Units

arg mein E(s,a~p=L(a®, me(s))
arg m@in E(s.a~p*KL(a", mg(s))

inpus Retna

30x32 Video
Input Retina

Early successes: ALVINN: NeurIPS 1989, D. Pomerleau



(General) Imitation Learning vs Behavioral
Cloning

* Behavioral Cloning (supervised learning):

arg mgn E(sa)~prL(a*, me(s))

Distribution provided exogenously
* (General) Imitation Learning:

arg mgn IEs~P(s|9)L(7T* (s), mg(s))

Distribution depends on the rollout
P(s|0) = state distribution of mg
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What can go wrong?

Errors in supervised learning:
- Assume independent and identically distributed (lID) state, action pairs, then if we have
error at time t with probability €, then over a time period the error would be bounded

by €T in expectation.

In imitation learning, the state distribution of our data depends on the
choice of actions.

End up in states that you have not During training:
seen before... s ~ p*

... compounding errors .
In test time:

s~P(s|mp)




Limitations of Behavioral Cloning: Compounding
Errors

iR 10 Mode Autonomous

11D Assumption Reality

(supervised learning) -

g makes a mistake
New state sampled not from P*!
Worst case is catastrophic!

Cannot recover from new states



Advantages:
- Simple
- Efficient

Use When:
- 1-step deviations not too bad!

- Learning reactive behaviors

- Expert trajectories “cover”
state space

Disadvantages:

- Distribution mismatch between
training and testing

- No long-term planning

Don’t Use When:
- 1-step deviations can lead to
catastrophic error

- Optimizing long-term objective (at
least not without a stronger model)



Behavioral Cloning

arg mein IE(s,a*)~P*L(a*» Tlg (S)) /-\

Works well when P* is close to Pg

Collect Supervised
Direct Policy Learning (via Interactive Demonstrator) Demonstrations Learning
Requires Interactive Demonstrator (BC is a 1-step special case)
Rollout in
Inverse RL RL piblem Environment
Learn r such that: [ \

n* = arg max IE5~P(S|9)T(S, Tg(S))

Assume learning r is statistically easier than directly learning *



Types of Imitation Learning

Behavioral

Cloning

Direct Policy

Learning Optional
(interactive IL)

Inverse

Reinforcement
Learning




Today’s itinerary

* Intro to Imitation Learning
* Behavioral Cloning

* Imitation Learning with Interactive Experts



Behavioral Cloning is simplest example
Beyond BC: using interactive demonstrator

Often analyzed via learning reductions
* Reduced “harder” learning problem to “easier” one
 Imitation Learning = Supervised Learning



Behavioral Cloning:

E,p(s|g)L(a”(s), 7 (S))/—> E(s,a*)~p*L(a*, g (SB
Y N
A: General Imitation Learning B: Behavioral Cloning

—

What does learning well on B imply about A?
- e.g., can one lift PAC learning results from B to A?



Steering —
from expert o <@ \
N

Yo
/
Can query expert at any state ?\ (

. . * \' S l§
Construct loss function: L(t*(s), m(s)) \"&:-,.,w

* Typically applied to rollout trajectories of policies
we are training: s~P(s|m)

* Driving example: L(n*(s),n(s)) = (n*(S) - ﬂ(S))z

Expert provides feedback on state
visited by policy



Alternating Optimization (Naive Attempt)

1. Fix P, estimate

* Solve arg mgn IESNPL(T[(S), Tg (S)) Just behavioral cloning!

2. Fix T, estimate P Update state distributions
* Empirically estimate via rolling out

3. Repeat

Not guaranteed to converge!



* Initial predictor: m, (initial predictor: initial expert demonstrations)

* For m sequence of predictors (initialize m=1)
- Collect trajectories 7 via rolling out m,,,_4 (typically rollout multiple times)
- Estimate state distribution P,, usings € T
- Collect interactive feedback {r*(s)|s € T} (requires interactive expert)

- Data Aggregation (e.g., DAgger)
* Trainm,, onP; U---UP,
- Policy Aggregation (e.g., SEARN & SMiLe)
* Train intermediate policy 1, on only B,
* T, = By, + (1 — B)m,,_1 (geometric blending of policies)



DAgger in Practice




Reduction to sequence of supervised learning problems
* Constructed from rollouts from previous policies
* Requires interactive expert feedback

Two approaches: Data Aggregation & Policy Aggregation
* Ensure convergence
* Motivated by different theory

Not covered:
* What is expert feedback and loss function? (depends on application)






Open X-Embodiment: Robotic Learning Datasets and RT-X Models
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