Principles of Robot Autonomy ||

Intro to Reinforcement Learning

A Stanford ASEY
&%/ University :

Today’s lecture

e Aim
* Provide intro to RL

References:

 Sutton and Barto, Reinforcement Learning: an Introduction
 Bertsekas, Reinforcement Learning and Optimal Control

Courses at Stanford:

- CS 234 Reinforcement Learning

- CS 332 Advanced Survey of Reinforcement Learning
- MS&E 338 Reinforcement Learning

1/22/24 AA 274B | Lecture 4 2

http://web.stanford.edu/class/cs234/index.html
http://cs332.stanford.edu/
https://web.stanford.edu/class/msande338/

What is Reinforcement Learning?

Learning how to make good decisions by interaction

action
a,

: r!+n’
- .
" s | Environment

1/22/24 AA 274B | Lecture 4 3

Why Reinforcement Learning

* Only need to specify a reward function. Agent learns everything
else!

* Successes in
* Helicopter acrobatics

* Superhuman Gameplay: Backgammon, Go, Atari
* Investment portfolio management

* Making a humanoid robot walk

1/22/24 AA 274B | Lecture 4 4

Why Reinforcement Learning?

* Only need to specify a reward function. Agent learns everything
else!

* Successes in
* Helicopter acrobatics
* positive for following desired traj, negative for crashing
* Superhuman Gameplay: Backgammon, Go, Atari
* positive/negative for winning/losing the game
* Investment portfolio management
 positive reward for $5S

* Making a humanoid robot walk
* positive for forward motion, negative for falling

1/22/24 AA 274B | Lecture 4 5

Infinite Horizon MDPs

State: x€EX (oftens € §)

Action: u€eU (often a € A)
Transition Function: T(xp |x—1,up—q) = (x| Xp_1, Upq)
Reward Function: . = R(Xx¢, Up)

Discount Factor: 14

MDP (stationary model): M = (X,U,T,R,y)

1/22/24 AA 274B | Lecture 4 6

e
Infinite Horizon MDPs

MDP: M = (X, UT,R,Yy)

Stationary policy: uy = mw(x;)

Goal: Choose policy that maximizes cumulative (discounted) reward

2 th(xt, ﬂ(xt))] ;

t=0

V* = max E
VIA

> vR(x, n(xt))]

t=0

n* =argmax E
T

1/22/24 AA 274B | Lecture 4

Infinite Horizon MDPs

* The optimal value function V*(x) satisfies Bellman’s equation

V*(x) = max R(x,u) +vy z T(x'|x,uw)V*(x")

x'ex

 For any stationary policy m, the values V. (x) =
E|Y 0V R(xs, m(x:))| xo = x| are the unique solution to the equation

Vo) = R, () +y) TG m(0) Ve (&)

x'ex

1/22/24 AA 274B | Lecture 4 8

State-action value functions (Q functions)

* The expected cumulative discounted reward starting from x, applying u, and
following the optimal policy thereafter

V*(x) = max (R(x, u)+y 2 T (x'|x,u) V*(x’))

4
q X €X)
Y

Q" (x,u)
* The optimal Q function, Q*(x, u), satisfies Bellman’s equation

Q*(x,u) = R(x,u) +vy 2 T (x'|x,u) max Q*(x',u")

x'eXx

* For any stationary policy m, the corresponding Q function satisfies
0n(6u) = R, +7) T |%,1) Qnx', m(x")
x'ex

1/22/24 AA 274B | Lecture 4 9

Solving infinite-horizon MDPs

If you know the model (i.e., the transition function T and reward
function R), use ideas from dynamic programming

 Value Iteration / Policy Iteration
Reinforcement Learning: learning from interaction

 Model-based
 Model-free

1/22/24 AA 274B | Lecture 4 10

Value |teration

* Initialize Vy(x) = 0 for all states x
* Loop until finite horizon / convergence:

Viers () = max | RG,w) +7) T, 1) Vi (x)

x'ex

* Value iteration for Q functions

Qi (ow) = RGw +y) T(x'lx,u) max Qe (x',u)

x'ex

1/22/24 AA 274B | Lecture 4 11

Policy Iteration

Starting with a policy m; (x), alternate two steps:

1. Policy Evaluation
Compute V7, (x) as the solution of

Ve, () = RO () +7) TG, 0(6)) Vi ()

x'eXx

2. Policy Improvement
Define .1 (x) = arg max (R (c,u) + ¥ 2rer T (X |x, 1) Vnk(x’))
Proposition: 1, (x) = 7Tk(x) VxeX

Inequality is strict if 7T, is suboptimal

Use this procedure to iteratively improve policy until convergence

1/22/24 AA 274B | Lecture 4 12

Recap

* Value Iteration
* Estimate optimal value function
* Compute optimal policy from optimal value function

* Policy Iteration
e Start with random policy
* |teratively improve it until convergence to optimal policy

* Requires model of MDP to work!

1/22/24 AA 274B | Lecture 4 13

Learning from Experience

* Without access to the model, agent

needs to optimize a policy from
interaction with an MDP

* Only have access to trajectories in
MDP:

* T = (X, Ug, T, X1y s Uy—1, TH—1, X11)

1/22/24 AA 274B | Lecture 4

Agent

r

Environment

Learning from Experience

How to use trajectory data?

* Model based approach: estimate T'(x’|x, u), then use model to plan

* Model free:
* Value based approach: estimate optimal value (or Q) function from data

* Policy based approach: use data to determine how to improve policy
 Actor Critic approach: learn both a policy and a value/Q function

1/22/24 AA 274B | Lecture 4 15

Learning from Experience

How to use trajectory data?

* Model based approach: estimate T'(x’|x, u), then use model to plan

* Model free:
* Value based approach: estimate optimal value (or Q) function from data

* Policy based approach: use data to determine how to improve policy
 Actor Critic approach: learn both a policy and a value/Q function

1/22/24 AA 274B | Lecture 4 16

Temporal difference (TD) learning

* Main idea: use bootstrapped Bellman equation to update value
estimates

* Bootstrapping: use learned value for next state to update value at
current state
* aims to enforce consistency with respect to Bellman’s equation:

E[Qr(xp, up) — (e + ¥Qr(Xg41, Ug+1)] = 0

. J
Y

Temporal Difference (TD) error

1/22/24 AA 274B | Lecture 4 17

TD policy evaluation

Suppose we have a policy ; we want to compute an estimate of Q..
With step size a € (0,1), loop:
1. Sample (xy, U, 7%, Xk +1) from MDP

2. @(Xk»uk) N é(xkruk) +a (Tk + V@(xk+1»uk+1) — @(Xk»uk))

Notes:

* Can consider a decreasing sequence of step sizes to ensure convergence

1/22/24 AA 274B | Lecture 4 18

-
Q-learning

Instead of estimating Q, try to estimate Q~ via
QO ug) <« Q(xp, Uy) + (Tk +y max Q(Xps1,u) — Q(xk;uk))

(using the TD error for the optimal policy ™", instead of «)

Thus, we aim to estimate Q™ from a (possibly sub-optimal)
demonstration policy . This property is known as off-policy learning

1/22/24 AA 274B | Lecture 4 19

Exploration vs. Exploitation

In contrast to standard machine learning on fixed data sets, in RL we
actively gather the data we use to learn

* We can only learn about states we visit and actions we take
* Need to explore to ensure we get the data we need
* Efficient exploration is a fundamental challenge in RL!

Simple strategy: add noise to the policy.

e-greedy exploration:

* With some small probability €, take a random action; otherwise take the most
promising action

1/22/24 AA 274B | Lecture 4 20

Q-learning with e-greedy exploration

Initialize Q (x, u) for all states and actions.
Let m(x) be an e-greedy policy according to 0Q, i.e.,
(x) = {UniformRandom(‘U) with probability €
argmax,, Q (x, u) with probability (1 — €)
Loop:
1. Take action: u, ~ m(xy).
2. Observe reward and next state: (7%, Xj+1)-
3. Update Q to minimize TD error;

Q(xp, ug) « Qxp, up) +a| 1 + max Q(xg+1,u) — Q(xk»uk))

1/22/24 AA 274B | Lecture 4 21

-
Fitted Q Learning

How to deal with large/continuous state/action spaces?
Use parametric model for Q function: Qg (x, 1) (e.g., Qg(x,u) = 8T p(x,u))

Stochastic gradient descent on squared TD error to update 6:

0 <0+a (Tk +y max Qg (xp+1, 1) — Qg (xk:uk)) Vo Qg (xr, ug)

/ \)
| |
v Y

learning rate d(Squared TD Error) d_Q
dQ do

1/22/24 AA 274B | Lecture 4 22

-
Q Learning Recap

Pros:

* Canlearn Q function from any interaction data, not just trajectories gathered
using the current policy (“off-policy” algorithm)

* Relatively data-efficient (can reuse old interaction data)

Cons:

* Need to optimize over actions: hard to apply to continuous action spaces
* Optimal Q function can be complicated, hard to learn

* Optimal policy might be much simpler!

Other popular model-free, value-based approach: SARSA (on policy algorithm)

1/22/24 AA 274B | Lecture 4 23

Next time

More on:

action
a,

ra’

1/22/24 AA 274B | Lecture 4 24

