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Learning from Experience

How to use trajectory data?

* Model based approach: estimate T'(x’|x, u), then use model to plan

* Model free:
* Value based approach: estimate optimal value (or Q) function from data

* Policy based approach: use data to determine how to improve policy
 Actor Critic approach: learn both a policy and a value/Q function
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Model-free, policy based: Policy Gradient

Alternative: instead of learning the Q function, learn the policy directly!
Define a class of policies mg where 6 are the parameters of the policy
Can we learn the optimal 8 from interaction?

Goal: use trajectories to estimate a gradient of policy performance
w.r.t. parameters 6
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Policy Gradient

A particular value of 8 induces a distribution p(t; 8) over possible trajectories

. Distrib(utlion 5())mes from stochastic dynamics T(x'| x, u) as well as stochastic policy
u~mn(|x;0).

Objective function:
J(@) = Erp(z:0) [r(7)]

l.e.,

1(6) = j r()p(x; 0)d

where r(7) is the total discounted cumulative reward of a trajectory T
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Policy Gradient

Gradient of objective w.r.t. parameters:

Vo] (0) = JT(T)VQP(T; 6)dt
Vop(t;0)

Trick: Vgp(t;0) = p(z; 0) p(1;0)

= p(t;0)Vglogp(t;0)
Vo) (6) = f (r(D)V logp(x; 0)p(; 0) dr

Vo] (8) = Evp(r; 9|7 (1)Vg logp(7; 6)]
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Policy Gradient

Vo] (0) = E;pr; )| (T)Vg logp(z; 0)]

logp(t;6) = log (1_[ T (X412, up)mo (uy |xt)>

t=0

— Z log T(xt+1 | x;, Ut) + log g (us|x¢)

t=0

= Vo logp(r;0) = ) Vo logmy (i)

t=0
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Policy Gradient

Vo] (0) = E;pr; )| (T)Vg logp(z; 0)]

logp(t;6) = log (1_[ T (X412, up)mo (uy |xt)>

t=0

— Z log T(xt+1 | x;, ut) + log g (us|x¢)

t=0
We don’t need to know
= VH lOg p(T; 0) — z Vg lOg Ty (ut |xt) the transition model to

t>0 compute this gradient!
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-
Policy Gradient

If we use g to sample a trajectory, we can approximate the gradient
via N Monte Carlo samples:

Vo) (6) = Er_p(u[r (1075 logp(z; 6)]
1 J . .
~ ﬁzliv=1 (T(T(l)) tho Vo log Ttg (u?) |x§l)))

Intuition: adjust 0 to:
* Boost probability of actions taken if reward is high
* Lower probability of actions taken if reward is low

Learning by trial and error

1/24/24 AA 274B | Lecture 5 9



Time dependency of policy gradient theorem

* Previous estimator for policy gradient was

Vol (6) ~ NE( (t®) D Vo logmp(u”|x ))

t=0

Action u,s can not change reward 1, for t < t’ (i.e., previous timesteps):

N
1 l
Vo] (0) = NZ (Z Vg logmg (u, )|xt ) z T(x;(c ),uk )

t=>0 k=t

(caveat: this is not a rigorous

argument we’re presenting here)
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R EEEEEEEEE—————S——m—m—m———
REINFORCE

Loop forever:
Generate episode x, Ug, 1y, X1, U1, 1 ... With TTg

Loop forallt =0,..., N — 1: . .
pforallt =0, ..., 1 Cumulative tail reward,
Gr < Ym_¢Te«—— the tail “return”

0 —0+aG,Vglogmg(us|x,)
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Policy Gradient Recap

Pros:
* Learns policy directly — can be more stable (less moving parts than Q-learning)
* Works for continuous action spaces (no need to “argmax” Q)

* Converges to local maximum of J/(8)

Cons:
* Needs data from current policy to compute gradient — data inefficient

* Gradient estimates can be very noisy
* Need to reduce variance of gradient estimator: baselines and actor-critic
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Deep Reinforcement Learning

* Deep Q@ learning:
* Use neural network as Q function

* Works in continuous state space
domains

‘ v ‘ tanh(Zw, v)
e

A
* Deep Policy Gradient: 4\\

\
. rP\z;z\aNrgfl':erize policy as deep neural \%}}’A“\i%/

* Policy can act on high dimensional

input, e.g., directly from visual nput  FC Hidden 1 (16)  FC Hidden 2 (16) Output
feedback
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Tabular model-based RL

* Discrete state/action space with stochastic transitions
* If model is known, can use value iteration/policy iteration/etc.

* Model unknown: want to build approximate model from observed
transitions
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Tabular MBRL outline

* Assume initial policy

* Loop forever:

* Take some number of actions, resulting in transition/reward data
* Improve dynamics model
* Choose actions/policy

* Approaches for action selection:

* Dynamic programming/Vl/etc. on approximate model
* Expensive, gives optimal policy for model

* Plan suboptimal sequence of actions via online control optimization
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Learning a tabular model from data

e States (X{,X5, ... , X;,)
e Actions (uq,u,, ..., u,,)
* Want to learn p(x;|x;,uy) forall i, j, k

* Main strategies:
* max likelihood point estimation
* Bayesian approaches
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e
Max likelihood for tabular MBRL

Categorical likelihood: p(xi|x]-, uy, 9) =0j; 209 = 1

Assume data D = {(x, u,x’)}ld:1
Max likelihood:

max Z logp(x'|x,u,0)

Optimizing this gives the maximum likelihood estimate
5 N(x;, ug, X;)
ijk —
N(x;, uy)
where N(,-) is the empirical count
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Max likelihood for tabular MBRL

¢ Bijk = N(Xj,uk,xl-)/N(Xj,uk)
* Problem: what ifN(xj,uk) =07

* For example, if we are starting with zero information, this
model estimation scheme breaks

e Simple solution: start all of our counts at 1, i.e,,
e Store N(xj, Uy, X;); note that N(xj, uk) = in N(xj, Uy, X;)
* Replace N(x;, ug, Xx;) with N(x]-, uk,xl-) +1
* Gives 0 = (N(xj, ug, X;) + 1)/(N(xj, uy) + n)
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Why model-based?

* Advantages
* Transitions give strong signal
* Data efficiency, improved multi-task performance, generalization

* Weaknesses
* Optimizing the wrong objective (i.e., not your ultimate task of optimizing reward)

* May be very difficult/intractable for systems with high dimensional
observations/states
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Challenges in RL for Robotics

Data-efficiency
Sim-to-real
Exploration

Reward design
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Next time

Convolution

Pooling Convolution Pooling Fully Fully

Connected Connected

Output Predictions
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