Principles of Robot Autonomy II

Learning-based Perception
Today’s itinerary

• Stats/ML review

• Neural network basics

• Convolutional neural networks

• Robotic applications
If we know the input is image data, we can assume some spatial locality → weight sharing
Convolutional neural networks (CNN)

Traditionally consist of 4 types of layers:
- Convolutional layers (CONV)
- Nonlinearity layers (RELU)
- Pooling layers (POOL)
- Fully-connected layers (FC)

LeNet (1998)
Convolution layer

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. “slide over the image spatially, computing dot products”
Convolution layer

32x32x3 image
5x5x3 filter w

1 number:
the result of taking a dot product between the filter and a small 5x5x3 chunk of the image
(i.e. $5 \times 5 \times 3 = 75$-dimensional dot product + bias)

$w^T x + b$
Convolution layer

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial locations

activation map
Convolution layer

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial locations

activation maps
Convolution layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!
Convolution Layer Visualization

http://cs231n.github.io/convolutional-networks/
Feature hierarchy

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
Pooling layer

As we move higher up the feature “food chain” we can save ourselves some computational effort by lowering the resolution

Types of pooling:
• MAX pooling
• MEAN pooling
Fully connected layer

We’ve seen this one before!

Image “summary vector” with all of the redundant pixel info boiled out

Linear classifier (softmax)
Putting it all together – CNN

http://cs231n.stanford.edu/
Live Demo - Inner Workings of a CNN

https://adamharley.com/nn_vis/cnn/3d.html

There’s also a 2D version:
https://adamharley.com/nn_vis/cnn/2d.html
Classification showdown

Who wins?

\[
\nabla (f \circ g)(x) = ((Dg)(x))^T (\nabla f)(g(x))
\]
End-to-end learning wins!

Results

- **ILSVRC-2012 results**

![ILSVRC-2012 Results Diagram](image)

Error (5 predictions)

- **Runner-up**
 - Top-5 error rate: 26.172%

- **Proposed method**
 - Top-5 error rate: 16.422%

AlexNet (2012)

Disclaimer: hand-crafted features may still be the right choice for your niche application.
Modern architectures (deeper and deeper)

<table>
<thead>
<tr>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 weight layers</td>
<td>19 weight layers</td>
</tr>
<tr>
<td>conv3-64</td>
<td>conv3-64</td>
</tr>
<tr>
<td>conv3-64</td>
<td>conv3-64</td>
</tr>
<tr>
<td>conv3-128</td>
<td>conv3-128</td>
</tr>
<tr>
<td>conv3-128</td>
<td>conv3-128</td>
</tr>
<tr>
<td>conv3-256</td>
<td>conv3-256</td>
</tr>
<tr>
<td>conv3-256</td>
<td>conv3-256</td>
</tr>
<tr>
<td>conv3-512</td>
<td>conv3-512</td>
</tr>
<tr>
<td>conv3-512</td>
<td>conv3-512</td>
</tr>
<tr>
<td>maxpool</td>
<td>FC-4096</td>
</tr>
<tr>
<td>FC-4096</td>
<td>FC-1000</td>
</tr>
</tbody>
</table>

Modern architectures (deeper and deeper)

Inception-v3 (2016)
Even more modern architectures

Transformer (2017)

Vision Transformer (2020)
Today’s itinerary

• Stats/ML review
• Neural network basics
• Convolutional neural networks
• Robotic applications
Object localization and detection

Results from Faster R-CNN, Ren et al 2015
Object localization

Instead of outputting only a class (with associated loss function), also regress on 4 numbers defining the edges of a bounding box.

Input: image

Only one object, simpler than detection

Neural Net

Output:
- Box coordinates (4 numbers)
- **Correct output:** box coordinates (4 numbers)

Loss:
- L2 distance
Localization and detection

Instead of outputting only a class (with associated loss function), also regress on 4 numbers defining the edges of a bounding box.
Object detection

Sliding window: using a classifier as the basis for a detector

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

Classification scores: P(cat)
Object detection

Sliding window: using a classifier as the basis for a detector
Object detection

Sliding window: using a classifier as the basis for a detector

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

Classification scores: P(cat)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.75</td>
</tr>
<tr>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>
Object detection

Sliding window: using a classifier as the basis for a detector

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

Classification scores: P(cat)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.75</td>
</tr>
<tr>
<td>0.6</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Object detection – sliding window

Overfeat (Sermanet et al. 2014)
Object detection – more efficient approaches

“Proposal” method to identify “blobby” regions of interest (could be another NN)

Two-headed classifier/bounding box regressor
Object detection – more efficient approaches

YOLO: You Only Look Once
Detection as Regression

Divide image into S x S grid

Within each grid cell predict:
 B Boxes: 4 coordinates + confidence
 Class scores: C numbers

Regression from image to
7 x 7 x (5 * B + C) tensor

Direct prediction using a CNN

Redmon et al, “You Only Look Once:
Unified, Real-Time Object Detection”, arXiv 2015
Robotics – need for speed!

<table>
<thead>
<tr>
<th>Model Checkpoint</th>
<th>Million MACs</th>
<th>Million Parameters</th>
<th>Top-1 Accuracy</th>
<th>Top-5 Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>MobileNet_v1.1.0_224</td>
<td>569</td>
<td>4.24</td>
<td>70.7</td>
<td>89.5</td>
</tr>
<tr>
<td>MobileNet_v1.1.0_192</td>
<td>418</td>
<td>4.24</td>
<td>69.3</td>
<td>88.9</td>
</tr>
<tr>
<td>MobileNet_v1.1.0_160</td>
<td>291</td>
<td>4.24</td>
<td>67.2</td>
<td>87.5</td>
</tr>
<tr>
<td>MobileNet_v1.1.0_128</td>
<td>186</td>
<td>4.24</td>
<td>64.1</td>
<td>85.3</td>
</tr>
<tr>
<td>MobileNet_v1.0.75_128</td>
<td>317</td>
<td>2.59</td>
<td>68.4</td>
<td>88.2</td>
</tr>
<tr>
<td>MobileNet_v1.0.75_192</td>
<td>233</td>
<td>2.59</td>
<td>67.4</td>
<td>87.3</td>
</tr>
<tr>
<td>MobileNet_v1.0.75_224</td>
<td>162</td>
<td>2.59</td>
<td>65.2</td>
<td>86.1</td>
</tr>
<tr>
<td>MobileNet_v1.0.75_256</td>
<td>104</td>
<td>2.59</td>
<td>61.8</td>
<td>83.6</td>
</tr>
<tr>
<td>MobileNet_v1.0.50_224</td>
<td>150</td>
<td>1.34</td>
<td>64.0</td>
<td>85.4</td>
</tr>
<tr>
<td>MobileNet_v1.0.50_192</td>
<td>110</td>
<td>1.34</td>
<td>62.1</td>
<td>84.0</td>
</tr>
<tr>
<td>MobileNet_v1.0.50_160</td>
<td>77</td>
<td>1.34</td>
<td>59.9</td>
<td>82.5</td>
</tr>
<tr>
<td>MobileNet_v1.0.50_128</td>
<td>49</td>
<td>1.34</td>
<td>56.2</td>
<td>79.6</td>
</tr>
<tr>
<td>MobileNet_v1.0.25_224</td>
<td>41</td>
<td>0.47</td>
<td>50.6</td>
<td>75.0</td>
</tr>
<tr>
<td>MobileNet_v1.0.25_192</td>
<td>34</td>
<td>0.47</td>
<td>49.0</td>
<td>73.6</td>
</tr>
<tr>
<td>MobileNet_v1.0.25_160</td>
<td>21</td>
<td>0.47</td>
<td>46.0</td>
<td>70.7</td>
</tr>
<tr>
<td>MobileNet_v1.0.25_128</td>
<td>14</td>
<td>0.47</td>
<td>41.3</td>
<td>66.2</td>
</tr>
</tbody>
</table>

MobileNets (2017)

Tiny YOLO (2017)
End-to-end: from pixels to motor commands

DAVE-2 (NVIDIA 2016)

Output: vehicle control
Fully-connected layer
Fully-connected layer
Fully-connected layer

Convolutional feature map 64@1x18
Convolutional feature map 64@3x20
Convolutional feature map 48@5x22
Convolutional feature map 36@14x47
Convolutional feature map 24@31x98
Normalized input planes 3@60x200
Input planes 3@60x200

Somewhat less scary:
https://www.youtube.com/watch?v=HJ58dbd5g8g
End-to-end: from sensors+language to action

SayCan (Google 2022)
Information Representations

Choice of modules

3D semantic occupancy network
OccNet (ICCV '23), Tesla

BEV occupancy flow & trajectory prediction
UniAD (CVPR '23 best paper)

Choice of representations

Output representations

Mapping

Semantic BEV map
Vectorized polylines and polygons

Input representations

Planning

Latent queries
track, occupancy, mapping
Ego queries

Output representations

Coupled through module placement!
Compounded complexity
Tools of the trade

• Software packages for automatic differentiation/gradient computation
 • Caffe (old)
 • Torch (old)
 • Theano (old)
 • TensorFlow (Google, Heavyweight #1)
 • PyTorch (Facebook, Heavyweight #2)
 • MXNet/Chainer/… (Others, better at some things for specific applications)

• Specify an abstract computation graph (inputs and outputs of NN equations); software does the rest!

TensorFlow: a *lot* of chain rule in this picture
Lots of stuff left out

• Generative vs. discriminative models
• Train/validation/test sets
• Learning rate and other hyperparameter tuning
• Recurrent neural networks for sequential data (e.g., videos)
• Reinforcement learning and ML outside of purely visual recognition-focused tasks

Consider STATS216, CS229, CS231n, CS224n, CS331b to learn more!
Next time