Learning Outcome for next four Lectures

Modeling and Evaluating Grasps

Apply Learning to Grasping and Manipulation

Modeling and Executing Manipulation

Use Manipulation to Perceive better
Today’s itinerary

• Analytical Approach to Modeling a Grasp
 • Terminology
 • Modeling of a Grasp
 • Stability Analysis of a Grasp
 • Form Closure
 • Force Closure

• Generating a Grasp
• Grasp Force Optimization
• Modeling Push Manipulation
What is a grasp?

• Restraining an object’s motion through application of forces and torques at a set of contact points
How to evaluate a grasp?

What are good grasp characteristics?

Grasp Maintenance:
contact forces applied by the hand are such that they prevent contact separation and unwanted contact sliding

Closure:
Grasps that can be maintained for every possible disturbance load
Let’s model a grasp!
What’s a wrench?

• Each point force also applies torque
 \[\tau = d \times f \]
• Wrench is a force-torque pair

\[
\mathbf{w}_{ij} = \left(\frac{\mathbf{f}_{ij}}{\lambda (\mathbf{d}_i \times \mathbf{f}_{ij})} \right)
\]

• The i-th point contact has m wrenches, one for each force in the pyramidal approximation of the friction cone
• d is the vector from the point contact to the torque origin
• \(\lambda \) is a constant relating force to torque
What’s a grasp?

• = set of wrenches that can be achieved

\[F_o = G_1 f_{c_1} + \cdots + G_k f_{c_k} = [G_1 \quad \cdots \quad G_k] \begin{bmatrix} f_{c_1} \\ \vdots \\ f_{c_k} \end{bmatrix} \]

\(f_c \in FC. \)

• \(G_i \) = wrench basis vectors transformed into single reference coordinate frame

• \(G = [G_1, \ldots, G_k] \) = grasp map
 • Transforming all applied forces and torques to achievable wrenches
Grasp Wrench Space

• Convex hull of all the wrenches from the contact points -- total possible range of wrenches that can be applied

• For 3D objects, wrench space is 6D
 • 3D for force, 3D for torque
 • For 2D objects, it’s 3D
How to evaluate a grasp?

• Quantify:
 • How many external wrenches can a grasp withstand?

• Force Closure:
 • withstand all external wrenches
Condition for Force-Direction Closure

Algebraic condition?
For force vectors \(p, q, r \),
there must exist \(\alpha, \beta, \gamma > 0 \)
s.t. \(\alpha p + \beta q + \gamma r = 0 \)
Grasp Analysis – Force Closure

- A grasp is a force-closure grasp IF for any external wrench F_e there exist contact forces $f_c \in F_C$ such that

$$G f_c = -F_e$$

i.e., if able to apply sufficient force at each contact, every external wrench can be compensated for.

Practical test? Algebraic condition
How do you make the grasp stable?

• Ignore for now f_x

Does not contain origin, not stable

$w_{ij} = \left(\lambda (d_i \times f_{ij}) \right)$
In which quadrant of the wrench space do you add wrenches after adding the third contact point?

\[w_{i,j} = \frac{f_{i,j}}{\lambda (d_i \times f_{i,j})} \]
What if there was a third point?

\[w_{i,j} = \left(\lambda (d_i \times f_{i,j}) \right) \]
What if there was a third point?

Wrench hull

\(\mathbf{w}_{i,j} = \left(\frac{\mathbf{f}_{i,j}}{\lambda (\mathbf{d}_i \times \mathbf{f}_{i,j})} \right) \)
Both grasps are stable. Which one is better?
Grasp Quality

• Quality is how well a grip can resist disturbances
• Worst case scenario
 • How efficiently can a grip resist disturbance wrenches at its weakest point?
• Weakest means the direction (in wrench space) at which the sum normal force is converted to the desired wrench least efficiently
Worst Case Scenario

- The point on the wrench hull that is closest to the origin is the weakest point.
- Disturbances in the opposite direction are hardest to resist.
- Metric ε = The radius of the largest ball that can be enclosed in the wrench hull.
 - Varies from 0 to 1 due to normalization of wrenches.
Physical Meaning

• In the worst case, the sum magnitude of the contact wrenches would need to be $\frac{1}{\varepsilon}$ times the disturbance wrench
Are these grasps equally good?
Average Case Scenario

• How efficiently can a grip resist a disturbance wrench on average?
• Metric $\nu = \text{Volume of the convex hull in wrench space}$
• The three-point contact has more volume, so it is more stable on average
Form Closure versus Force Closure

• Both are in a contact configuration that resists all external disturbances.

• Note: Every form closure grasp is also in force closure

• Why do I need less contact points to be in Force closure?
How do we generate a grasp?
Suggested Reading

• Constructing Force Closure Grasps. Van-Duc Nguyen. IJRR 1988
• Planning Optimal Grasps. Carlo Ferrari & John Canny. ICRA 1992
Grasp Force Optimization

- In force closure, you can **theoretically** resist any wrench.
- But what forces do you need to apply at each contact to generate the desired wrench?
Motivating Example

Figure adapted from *A Grasping Force Optimization Algorithm for Multiarm Robots With Multifingered Hands*. Lippiello et al. Transactions on Robotics. 2013

Fig. 3. Sequence of significant configurations of the bottle and of the forces during task execution with $n = 10$.
Formalizing the problem

- **M** contact points at \(c^{(i)} \)
- \(f^{(i)} \) is the contact force applied at contact point
- Local coordinate system where \(x, y \) are tangent to surface and \(z \) is aligned with surface normal pointing inward
- \(f^i = (f_x^{(i)}, f_y^{(i)}, f_z^{(i)}) \)
- Friction cone

\[
\sqrt{f_x^{(i)}^2 + f_y^{(i)}^2} \leq \mu_i f_z^{(i)}
\]

- or in planar case: \(f_x^{(i)} \leq \mu_i f_y^{(i)} \)

Friction Cone Constraints

\[
\sqrt{f_x(i)^2 + f_y(i)^2} \leq \mu_i f_z(i)
\]

- or in planar case: \(f_x(i) \leq \mu_i f_y(i) \)

- Second-order cone constraints

\[
K_i = \left\{ x \in \mathbb{R}^3 \mid \sqrt{x_1^2 + x_2^2} \leq \mu_i x_3 \right\}, \quad i = 1, \ldots, M
\]

- Compact notation \(f(i) \in K_i, \quad i = 1, \ldots, M. \)

Equilibrium Constraints – Force

- $Q \in SO(3)$ transforms forces from local to global coordinate system
- $Q^{(i)} f^{(i)}$ = force applied to object
- Applied forces need to generate a force that compensates external force

\[f^{\text{ext}} \in \mathbb{R}^3 \]

\[Q^{(1)} f^{(1)} + \cdots + Q^{(M)} f^{(M)} + f^{\text{ext}} = 0 \]

Equilibrium Constraints – Torque

- $Q \in SO(3)$ transforms forces from local to global coordinate system
- $c^{(i)} \times Q^{(i)} f^{(i)} = \text{torque applied to object}$
- Applied forces need to generate a force that compensates external force
- $c^{(1)} \times Q^{(1)} f^{(1)} + \cdots + c^{(M)} \times Q^{(M)} f^{(M)} + \tau^{ext} = 0$

Matrix Notation of Cross Product

• $c^{(1)} \times Q^{(1)} f^{(1)} + \ldots + c^{(M)} \times Q^{(M)} f^{(M)} + \tau^{ext} = 0$
• $S^{(1)} Q^{(1)} f^{(1)} + \ldots + S^{(M)} Q^{(M)} f^{(M)} + \tau^{ext} = 0$

• Where

$$\begin{pmatrix}
0 & -c_z^{(i)} & c_y^{(i)} \\
-c_z^{(i)} & 0 & -c_x^{(i)} \\
-c_y^{(i)} & c_x^{(i)} & 0
\end{pmatrix} \in skew(3) \text{ where } S^i x = c^i \times x$$
Equilibrium Constraints – Force Closure

Compact notation

• Contact force vector \(f \in \mathbb{R}^{3M} \)
 \[f = (f^{(1)}, \ldots, f^{(M)}) \]

• Contact Matrices \(G_i \in \mathbb{R}^{6 \times 3} \)
 \[G_i = \frac{Q^{(i)}}{S^{(i)}Q^{(i)}}, i = 1 \ldots M \]

• Grasp matrix
 \[G = [G_1, \ldots, G_M] \in \mathbb{R}^{6 \times 3M} \]

• External Wrench \(\omega^{ext} = (f^{ext}, \tau^{ext}) \)

• Equilibrium conditions
 \[Gf + \omega^{ext} = 0 \]

Other Constraints Constraints

Hardware constraints (max torque, kinematic limits).

\[f \in C^{\text{other}} \]

Convex Optimization Problem

- Second-order cone program because friction cones are quadratic.

- Objective function:
 \[F^{\text{max}} = \max \left\{ \| f^{(1)} \|, \ldots, \| f^{(M)} \| \right\} \]
 \[= \max_{i=1,\ldots,M} \sqrt{f_x^{(i)} + f_y^{(i)} + f_z^{(i)}} \]

- Optimization problem:
 - minimize \(F^{\text{max}} \)
 - subject to \(f^{(i)} \in K_i, i = 1 \ldots M \)
 - \(Gf + \omega^{\text{ext}} = 0 \)

Motivating Example

Figure adapted from A Grasping Force Optimization Algorithm for Multiarm Robots With Multifingered Hands. Lipiello et al. Transactions on Robotics. 2013
Manipulation through Contact

Learning Hierarchical Control for Robust In-hand Manipulation

ICRA 2020 Submission

Tingguang Li, Krishnan Srinivasan, Max Q.-H. Meng, Wenzhen Yuan, Jeannette Bohg

A Data-Efficient Approach to Precise and Controlled Pushing

Hogan et al. CORL 2018.

Figure adapted from A Grasping Force Optimization Algorithm for Multiarm Robots With Multifingered Hands. Lippiello et al. Transactions on Robotics. 2013

Learning Hierarchical Control for Robust In-Hand Manipulation. Li et al. ICRA 2020.

A Data-Efficient Approach to Precise and Controlled Pushing. Hogan et al. CORL 2018.
Case Study – Planar Pushing

Reorient parts
- Mason 1986

Transport large objects
- Meričli 2015

Push-grasp under clutter
- Dogar 2010

Track object pose
- Koval 2015
Modeling Planar Pushing

Friction limit surface: describes friction forces occurring when part slides over support.

When pushed with a wrench within the limit surface: **no motion.**

For **quasi-static pushing:** wrench on the limit surface; object twist normal to limit surface where **twist** = linear and angular velocity: \(t_i = (v^i_x, v^i_y, \omega^i_z) \)

If **object translates without rotation** the friction force magnitude \(\mu mg \) where \(\mu = \) friction coefficient, \(m = \) object mass, \(g = \) gravitational acceleration.

Relation between wrench cone, limit surface and unit twist sphere. Adopted from Chapter 37, Fig 37.10 in Springer Handbook of Robotics.
Modeling Planar Pushing

\(o \) position of the object
\(v_o \) linear and angular object velocity
\(v_p \) linear velocity at the contact point - effective push velocity
\(p \) position of the pusher
\(u \) linear pusher velocity - action
\(c \) contact point (global)
\(c' \) contact point relative to \(o \)
\(n \) surface normal at \(c \)
\(l \) ratio between maximal torsional and linear friction force
\(\mu \) friction coefficient pusher-object

\(f_b \) left or right boundary force of the friction cone
\(m_b \) torques corresponding to the boundary forces
\(v_{o,b} \) object velocities resulting from boundary forces
\(v_{p,b} \) effective push velocities corresponding to the boundary forces
\(b = l, r \) placeholder for left or right boundary
\(s \) contact indicator, \(s \in [0, 1] \)
\(k \) rotation axis

Fig. 1: Overview and illustration of the terminology for pushing.
Validating Models for Planar Pushing

IROS 2016, "More than a Million Ways to Be Pushed: A High-Fidelity Experimental Dataset of Planar Pushing" by Peter Yu, Maria Bauza et al.
Validating Models for Planar Pushing

IROS 2016, "More than a Million Ways to Be Pushed: A High-Fidelity Experimental Dataset of Planar Pushing" by Peter Yu, Maria Bauza et al.

2/1/21
AA 274B | Lecture 6
Validating Models for Planar Pushing

More than a Million Ways to Be Pushed.
A High-Fidelity Experimental Dataset of Planar Pushing

Kuan-Ting Yu, Maria Bauza, Nima Fazeli, and Alberto Rodriguez
Computer Science and Artificial Intelligence Lab & Mechanical Engineering Department, MIT

IROS 2016, "More than a Million Ways to Be Pushed: A High-Fidelity Experimental Dataset of Planar Pushing" by Peter Yu, Maria Bauza et al.
Validating Models for Planar Pushing

IROS 2016, "More than a Million Ways to Be Pushed: A High-Fidelity Experimental Dataset of Planar Pushing" by Peter Yu, Maria Bauza et al.
Suggested Reading

• *Fast Computation of Optimal Contact Forces* by Boyd and Wegbreit. TRO 2007
Next time

• Learning-based approaches to Grasping and Manipulation