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Problem #1 (14 points) 
Your CS140E partner has decided to implement monitors for the synchronization needs of your 
team's kernel. Their design has a couple of differences from what was described in the Mesa 
paper. For each of the design changes below, state whether the change would work or not. If it 
works, how would it compare with the approach used in Mesa?  If it doesn't work, explain why.  
Assume Mesa-style monitors and condition variable semantics.  
 

(a)​Rather than implementing a Broadcast method on the conditional variable, they extend 
the conditional variable with a method that returns the number of threads waiting and the 
broadcast functionality was to be implemented by calling Notify that number of times.  

ANSWER: 
It would work.  Replacing a Broadcast call with a call that returns the count of waiting threads, 
followed by a loop that uses Notify to wake them up, appears to open up a potential race 
condition between the count being read and the wait list being modified.  The fact that any 
thread calling Broadcast must hold the monitor lock means this race cannot happen.  The 
monitor lock means that no other Wait or Notify can alter the condition variable's wait list 
membership between the read of the wait count and the Notify loop.  The Notify loop would 
wake all waiters on the list, and no other thread could join the list during the operation.  
 
 

(b)​Rather than implementing both the Mesa Notify and Naked Notify functionality, they 
proposed implementing only the Naked Notify mechanism and having the regular 
Notify built on top of it. In their design, there was to be a single underlying notification 
implementation that works for both the ordinary Notify and Naked Notify cases. 

ANSWER: 
ANSWER:  
It would work with a possible performance hit from spurious wake-ups.  The Naked Notify was 
done in Mesa to allow a device to do a Notify on a condition variable without holding the monitor 
lock. The lack of a monitor lock creates a race condition in which the device-handling thread 
sees that the device is not requesting attention, so it waits for the interrupt. If the device 
interrupts between this attention check and the waiting, the device interrupt Notify won't find the 
thread waiting, followed by the thread, then waiting after missing the interrupt. The Naked Notify 
handles this situation by having the Naked Notify set a binary semaphore if there is no one 
waiting, so that the next Wait will do a DOWN on the semaphore and not wait.   The device 
thread that hits this race will not wait, re-examine the device, and handle the interrupt.   
 
This race cannot happen on regular Notify because the monitor lock will always be held. Having 
such a semaphore causes the following thread that calls wait after a notify not to wait, leading to 
spurious wakeups on the conditional variable. Since Mesa-style monitors must always check 
after being woken up, these extra wakeups won't break anything, but can cause unnecessary 
additional work.  
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Problem #2 (7 points) 
The Mesa system pushed hard on using threads rather than events.  Ironically, some of their 
optimizations for threads, such as fast FORK/JOIN/Detach, eliminated the need for the data 
copying that would have been required as part of stack ripping if events were implemented on 
the same machine.  Describe what this was.  
 
ANSWER:  
Mesa's threads allocate procedure activation records from the heap rather than the stack used 
the papers that mention stack ripping. Stack ripping is the copying of the data from the stack 
since the original copy is lost when the activation record is popped from the stack. Allocating the 
records heap eliminates this requirement for copying since the record isn't forced to be 
deallocated. Hence, stack ripping isn't needed.  
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Problem #3 (7 points) 

The Eraser system worked on programs using the pthreads library.  That library was also used 
in the parallel-processing community to coordinate threads working together on a single 
problem.  As in the paper, such programs typically start with one thread; when execution 
reaches a parallel section, multiple threads run concurrently, each operating on its own portion 
of the data.  The original thread then waits for all the others to finish before continuing.  
Execution repeatedly alternates between a single thread working on the data and multiple 
coordinated threads working on the data. 

Explain what Eraser would report if it were run on such a program.  Would it identify real race 
conditions, produce incorrect warnings, or fail to run at all?  Be specific about why. 

 
ANSWER:  
Eraser assumes that locks are used to create critical sections, which is not the case in this 
programming style. It will unlikely do anything useful. An access pattern with many threads 
operating on different parts of a data structure shouldn't generate any messages, but the 
following sequential part and future parallel sections will likely cause Eraser to generate 
warnings about missing locks due to access to the same data items from different threads.  
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Problem #4 (7 points) 
In the Adams and Agesen paper, they compared their software virtual machine monitor — 
implemented using a dynamic binary translator—with a hardware virtual machine monitor on 
several benchmarks.  High-performance Java virtual machine implementations typically use 
just-in-time (JIT) code generation, which usually performs poorly under binary translation.  
Despite this, the SPECjbb Java benchmark results showed that the software virtual machine 
monitor avoided these performance problems.  How was this accomplished? 
 
ANSWER:  
The VMware VMM uses direct execution for user-level (ring3) code.  The SPECjbb runs JITed 
Java code in user mode, so any problems with JITs and the binary translator aren't seen.  
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Problem #5 (14 points) 

Both modern operating systems and virtual machine monitors emphasize isolation.  Modern 
operating systems advertise that different processes — possibly owned by different users — are 
isolated from one another and from the operating system kernel.  Similarly, virtual machine 
monitors isolate the multiple virtual machines running on a single host. 

Consider the virtual machine monitor described in the Waldspurger ESX paper, and answer the 
following questions: 

(a)​Can different processes owned by different users running in the same virtual machine 
end up sharing a page in machine memory even though the isolation properties of the 
guest operating system would not have set up such sharing?  If not, explain why.  If so, 
explain what could cause such an isolation violation​
​
ANSWER:​
With its transparent content-based page sharing mechanism, ESX can deduplicate a 
guest's memory content. If two processes in the same guest happen to have identical 
pages, they can end up using the same physical frame. This is the case for VM 1 
illustrated in Figure 3. This mechanism is only used when pages have the same content, 
therefore it does not provide any additional information to either process and does not 
violate isolation. 

(b)​Can processes running in different virtual machines access the same page in machine 
memory, given the ESX isolation policy?  If not, explain why.  If so, explain how.​
​
ANSWER:​
The answer is the same here, and corresponds to the white pages in VM 1, VM 2 and 
VM 3 all pointing to the same physical frame in Figure 3. 
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Problem #6 (14 points) 
x86 operating systems such as Linux and Windows use superpages (4 MB or 2 MB) to map the 
kernel into memory.  Answer the following questions about ESX’s memory virtualization.  ESX 
could have used superpages in its shadow page tables for these mappings but did not. 

(a)​Describe the disadvantage of not using superpages in the shadow page tables.​
​
ANSWER:​
The hypervisor has to maintain the shadow page tables, and each entry is 4k, so 
accessing each of them triggers some TLB pollution. Putting the shadow tables in 
superpages (for instance by placing a page directory's page tables right after it in 
memory) would make shadow page maintenance more efficient (and would make it 
reduce the guest's performance less) 

(b)​ List examples of the benefits of using 4 KB page mappings in the shadow page tables.  
Include at least one example from each of the two VMware papers.​
​
ANSWER:​
Superpages would introduce fragmentation for the hypervisor, and page alignment in the 
guest’s physical memory would have to be aligned in machine memory as well. This 
means that the tracing mechanism in the Adams and Agesen paper would have to be 
made much more complex, even though it is claimed that its performance is critical. 
Superpages also prevent fine grained page fault handling, which would make it almost 
impossible to implement Waldspurger’s memory sharing mechanism. Further, if 
superpages could still somehow be shared, there would still be much fewer instances of 
actual possible sharing, since the occasions in which two much larger regions have the 
same content would be much less common, so each VM would occupy more memory.
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Problem #7 (7 points) 
In virtualization theory, virtual machines are allowed to have timing differences from native 
machines.  In practice, VMware found this mostly to be true. One counterexample was in 
booting a version of DOS that did an OUT instruction to some device on the motherboard and 
spun in a loop, doing IN instructions until the IN returned some value. VMware's much faster IN 
instruction meant the loop exited with a blue screen error message saying the hardware had 
failed.  About the same time, AMD released a new CPU that made certain old x86 instructions 
run in fewer cycles and managed to hit a similar boot failure.    
 
Explain why it was an easy software fix for VMware and a significant problem for AMD. 
 
ANSWER: 
VMware products are implemented in software. VMware’s products dynamically rewrite the 
guest kernel, therefore by patching the VMM it is possible to introduce patches that will emulate 
lengthened IN instructions. Furthermore, if an issue is known to arise only on a specific 
operating system and for a specific device, VMware can let users specify their operating system 
so that the VMM can exceptionally pace its IN instructions to that device. AMD, on the other 
hand, cannot easily patch their chips, and even if they did, making such an exception in 
hardware would be a poor design choice. 
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Problem #8 (7 points) 

In the Receiver Livelock paper, the authors needed to monitor the kernel queue feeding the 
screend process to avoid livelock.  Recall that input processing was inhibited when the 
screening queue was 75% full and re-enabled when the queue dropped to 25% full. 

Assume the architecture of screend is updated to run as a pipeline of multiple processes 
connected by standard Unix pipes.  The first process receives each packet, which is then 
forwarded through the subsequent processes, with the last one sending the packet back out.  
Recall that Unix pipes are flow-controlled, so a write on a pipe will block until there is sufficient 
buffer space for the receiving process to accept the packet. 

Would we now need to inhibit input based on the state of each pipe in the pipeline, or only on 
the kernel-to-first-process queue?  Explain your answer. 

​
ANSWER: 
If we represent the situation described in the question as a diagram in the style of Figure 6-2 
from the Livelock paper, we would get the same diagram! 
In this diagram, packets can only be lost at the places where they could already be lost when 
screend was the only process involved. The new pipes can also experience congestion but they 
cannot drop messages, therefore the pressure on these pipes will backpropagate all the way to 
the first packet queue which will drop packets. Therefore, feedback from the first process in the 
pipeline reflects pressure in the whole pipeline, and no additional source of feedback is 
necessary. 
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