

CS 240 Midterm Examination
Fall Quarter 2025

You have 80 minutes for this examination; the number of points for each question
indicates roughly how many minutes you should spend on that question. Make sure you
print your name, SUID #, and sign the Honor Code below.

This is an open-book exam. You may bring any amount of printed material; all other
sources of information, including laptops, cell phones, etc. are prohibited. No electronic
devices are allowed.

Write all of your answers directly on the paper in the spaces provided after each
question.

NOTE: We will deduct points if a correct answer includes incorrect or irrelevant
information. (i.e., don’t write in everything you know in hopes of saying the
correct buzzword.)

I acknowledge and accept the Stanford University Honor Code. I have neither given nor
received aid in answering the questions on this examination.

__
(Signature)

Sample Answers
__
(Print your name, legibly!)

__@stanford.edu
(Stanford email account for grading database key)

Only the front side of the exam pages will be scanned. Do not write answers on the back
of the pages.

1

Problem #1 (14 points)
Your CS140E partner has decided to implement monitors for the synchronization needs of your
team's kernel. Their design has a couple of differences from what was described in the Mesa
paper. For each of the design changes below, state whether the change would work or not. If it
works, how would it compare with the approach used in Mesa? If it doesn't work, explain why.
Assume Mesa-style monitors and condition variable semantics.

(a)​Rather than implementing a Broadcast method on the conditional variable, they extend
the conditional variable with a method that returns the number of threads waiting and the
broadcast functionality was to be implemented by calling Notify that number of times.

ANSWER:
It would work. Replacing a Broadcast call with a call that returns the count of waiting threads,
followed by a loop that uses Notify to wake them up, appears to open up a potential race
condition between the count being read and the wait list being modified. The fact that any
thread calling Broadcast must hold the monitor lock means this race cannot happen. The
monitor lock means that no other Wait or Notify can alter the condition variable's wait list
membership between the read of the wait count and the Notify loop. The Notify loop would
wake all waiters on the list, and no other thread could join the list during the operation.

(b)​Rather than implementing both the Mesa Notify and Naked Notify functionality, they
proposed implementing only the Naked Notify mechanism and having the regular
Notify built on top of it. In their design, there was to be a single underlying notification
implementation that works for both the ordinary Notify and Naked Notify cases.

ANSWER:
ANSWER:
It would work with a possible performance hit from spurious wake-ups. The Naked Notify was
done in Mesa to allow a device to do a Notify on a condition variable without holding the monitor
lock. The lack of a monitor lock creates a race condition in which the device-handling thread
sees that the device is not requesting attention, so it waits for the interrupt. If the device
interrupts between this attention check and the waiting, the device interrupt Notify won't find the
thread waiting, followed by the thread, then waiting after missing the interrupt. The Naked Notify
handles this situation by having the Naked Notify set a binary semaphore if there is no one
waiting, so that the next Wait will do a DOWN on the semaphore and not wait. The device
thread that hits this race will not wait, re-examine the device, and handle the interrupt.

This race cannot happen on regular Notify because the monitor lock will always be held. Having
such a semaphore causes the following thread that calls wait after a notify not to wait, leading to
spurious wakeups on the conditional variable. Since Mesa-style monitors must always check
after being woken up, these extra wakeups won't break anything, but can cause unnecessary
additional work.

2

Problem #2 (7 points)
The Mesa system pushed hard on using threads rather than events. Ironically, some of their
optimizations for threads, such as fast FORK/JOIN/Detach, eliminated the need for the data
copying that would have been required as part of stack ripping if events were implemented on
the same machine. Describe what this was.

ANSWER:
Mesa's threads allocate procedure activation records from the heap rather than the stack used
the papers that mention stack ripping. Stack ripping is the copying of the data from the stack
since the original copy is lost when the activation record is popped from the stack. Allocating the
records heap eliminates this requirement for copying since the record isn't forced to be
deallocated. Hence, stack ripping isn't needed.

3

Problem #3 (7 points)

The Eraser system worked on programs using the pthreads library. That library was also used
in the parallel-processing community to coordinate threads working together on a single
problem. As in the paper, such programs typically start with one thread; when execution
reaches a parallel section, multiple threads run concurrently, each operating on its own portion
of the data. The original thread then waits for all the others to finish before continuing.
Execution repeatedly alternates between a single thread working on the data and multiple
coordinated threads working on the data.

Explain what Eraser would report if it were run on such a program. Would it identify real race
conditions, produce incorrect warnings, or fail to run at all? Be specific about why.

ANSWER:
Eraser assumes that locks are used to create critical sections, which is not the case in this
programming style. It will unlikely do anything useful. An access pattern with many threads
operating on different parts of a data structure shouldn't generate any messages, but the
following sequential part and future parallel sections will likely cause Eraser to generate
warnings about missing locks due to access to the same data items from different threads.

4

Problem #4 (7 points)
In the Adams and Agesen paper, they compared their software virtual machine monitor —
implemented using a dynamic binary translator—with a hardware virtual machine monitor on
several benchmarks. High-performance Java virtual machine implementations typically use
just-in-time (JIT) code generation, which usually performs poorly under binary translation.
Despite this, the SPECjbb Java benchmark results showed that the software virtual machine
monitor avoided these performance problems. How was this accomplished?

ANSWER:
The VMware VMM uses direct execution for user-level (ring3) code. The SPECjbb runs JITed
Java code in user mode, so any problems with JITs and the binary translator aren't seen.

5

Problem #5 (14 points)

Both modern operating systems and virtual machine monitors emphasize isolation. Modern
operating systems advertise that different processes — possibly owned by different users — are
isolated from one another and from the operating system kernel. Similarly, virtual machine
monitors isolate the multiple virtual machines running on a single host.

Consider the virtual machine monitor described in the Waldspurger ESX paper, and answer the
following questions:

(a)​Can different processes owned by different users running in the same virtual machine
end up sharing a page in machine memory even though the isolation properties of the
guest operating system would not have set up such sharing? If not, explain why. If so,
explain what could cause such an isolation violation​
​
ANSWER:​
With its transparent content-based page sharing mechanism, ESX can deduplicate a
guest's memory content. If two processes in the same guest happen to have identical
pages, they can end up using the same physical frame. This is the case for VM 1
illustrated in Figure 3. This mechanism is only used when pages have the same content,
therefore it does not provide any additional information to either process and does not
violate isolation.

(b)​Can processes running in different virtual machines access the same page in machine
memory, given the ESX isolation policy? If not, explain why. If so, explain how.​
​
ANSWER:​
The answer is the same here, and corresponds to the white pages in VM 1, VM 2 and
VM 3 all pointing to the same physical frame in Figure 3.

6

Problem #6 (14 points)
x86 operating systems such as Linux and Windows use superpages (4 MB or 2 MB) to map the
kernel into memory. Answer the following questions about ESX’s memory virtualization. ESX
could have used superpages in its shadow page tables for these mappings but did not.

(a)​Describe the disadvantage of not using superpages in the shadow page tables.​
​
ANSWER:​
The hypervisor has to maintain the shadow page tables, and each entry is 4k, so
accessing each of them triggers some TLB pollution. Putting the shadow tables in
superpages (for instance by placing a page directory's page tables right after it in
memory) would make shadow page maintenance more efficient (and would make it
reduce the guest's performance less)

(b)​ List examples of the benefits of using 4 KB page mappings in the shadow page tables.
Include at least one example from each of the two VMware papers.​
​
ANSWER:​
Superpages would introduce fragmentation for the hypervisor, and page alignment in the
guest’s physical memory would have to be aligned in machine memory as well. This
means that the tracing mechanism in the Adams and Agesen paper would have to be
made much more complex, even though it is claimed that its performance is critical.
Superpages also prevent fine grained page fault handling, which would make it almost
impossible to implement Waldspurger’s memory sharing mechanism. Further, if
superpages could still somehow be shared, there would still be much fewer instances of
actual possible sharing, since the occasions in which two much larger regions have the
same content would be much less common, so each VM would occupy more memory.

7

Problem #7 (7 points)
In virtualization theory, virtual machines are allowed to have timing differences from native
machines. In practice, VMware found this mostly to be true. One counterexample was in
booting a version of DOS that did an OUT instruction to some device on the motherboard and
spun in a loop, doing IN instructions until the IN returned some value. VMware's much faster IN
instruction meant the loop exited with a blue screen error message saying the hardware had
failed. About the same time, AMD released a new CPU that made certain old x86 instructions
run in fewer cycles and managed to hit a similar boot failure.

Explain why it was an easy software fix for VMware and a significant problem for AMD.

ANSWER:
VMware products are implemented in software. VMware’s products dynamically rewrite the
guest kernel, therefore by patching the VMM it is possible to introduce patches that will emulate
lengthened IN instructions. Furthermore, if an issue is known to arise only on a specific
operating system and for a specific device, VMware can let users specify their operating system
so that the VMM can exceptionally pace its IN instructions to that device. AMD, on the other
hand, cannot easily patch their chips, and even if they did, making such an exception in
hardware would be a poor design choice.

8

Problem #8 (7 points)

In the Receiver Livelock paper, the authors needed to monitor the kernel queue feeding the
screend process to avoid livelock. Recall that input processing was inhibited when the
screening queue was 75% full and re-enabled when the queue dropped to 25% full.

Assume the architecture of screend is updated to run as a pipeline of multiple processes
connected by standard Unix pipes. The first process receives each packet, which is then
forwarded through the subsequent processes, with the last one sending the packet back out.
Recall that Unix pipes are flow-controlled, so a write on a pipe will block until there is sufficient
buffer space for the receiving process to accept the packet.

Would we now need to inhibit input based on the state of each pipe in the pipeline, or only on
the kernel-to-first-process queue? Explain your answer.

​
ANSWER:
If we represent the situation described in the question as a diagram in the style of Figure 6-2
from the Livelock paper, we would get the same diagram!
In this diagram, packets can only be lost at the places where they could already be lost when
screend was the only process involved. The new pipes can also experience congestion but they
cannot drop messages, therefore the pressure on these pipes will backpropagate all the way to
the first packet queue which will drop packets. Therefore, feedback from the first process in the
pipeline reflects pressure in the whole pipeline, and no additional source of feedback is
necessary.

9

	CS 240 Midterm Examination
	
	
	Problem #1 (14 points)
	
	Problem #2 (7 points)
	
	Problem #3 (7 points)
	
	Problem #4 (7 points)
	
	
	Problem #5 (14 points)
	
	Problem #6 (14 points)
	Problem #7 (7 points)
	
	Problem #8 (7 points)
	

