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Announcements

For next class (Tuesday 10/5)

1. Read: Eliminating Receive Livelock in an Interrupt-Driven Kernel

2. Submit answers to reading questions (see course schedule) before class

When saying something in class, please state your first name the first time you
say something.
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https://web.stanford.edu/class/cs240/readings/livelock.pdf

Paper Backgrounds

e \Why Threads Are A Bad Idea (for most purposes)

o 1996 Invited conference talk
o Most machines uniprocessors at the time

e \Why Events Are A Bad ldea (for high-concurrency servers)

o 2003 HotOS paper
o Former event advocates argue for threads

e Cooperative Task Management without Manual Stack Management

or, Event-driven Programming is Not the Opposite of Threaded Programming

o 2002 paper from Microsoft Research
o Based on experience building event and thread systems
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What is the concurrency in this Linux/Mac code?

#include <stdio.h>

int main(void) {

char *str = "Hello, world!\n";

// Could some other execution happen between these statements?
printf(str);

return 9;
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Threads vs Events: Explain these figures

Shared state Event
(memory, files, etc.) Loop

0000 O

i

Event Handlers
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What were the metrics used to evaluate thread and events
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Problems with Threads?
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Problem with Events?
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CS142: Threads versus Events using Callbacks

Threads:

request = readRequest(socket);
reply = processRequest(request);

sendReply(socket, reply);

Events with callbacks:

readRequest(socket, doneRead);

function doneRead(request) {
processRequest(request, doneProcess);

}

function doneProcess(reply) {
sendReply(socket, reply, doneSend);

}

function doneSend(errorCode) {
doneCb(errorCode)

}

CS240 Lecture Notes Fall 2025



CS142: Threads versus Events using Callbacks

Threads:

request = readRequest(socket);
reply = processRequest(request);

sendReply(socket, reply);

Events with callbacks:

readRequest(socket, function(request) {
processRequest(request,
function (reply) {
sendReply(socket,reply,doneCb);

})s
})s
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Which one (thread or events) is harder to debug?
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Which would is better from a Software Engineering point

e Threads
e Events

Metrics:

Understandability?

System evolution?
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Software evolution: routine starts to block

function () {

// access shared data
routine()
// access shared data
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According to Ousterhout: When should you use threads?

Do the other papers agree with him?
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What are user level threads?

Why are they good?
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What is hard about having a large number of threads?
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Explain axis of this graph
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What did you think of the Continuation code?

Section 3.1
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What is stack ripping?

What are closures and how are they related to stack ripping?
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/O management

e synchronous
e asynchronous
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Data partitioning

e Coloring techniques?
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Concurrency in the today's computing environments

e \Web - JavaScript - All in on events

o Both in the browser and server (Node.js)
o Language has closures and support for continuations (Promises)

e Al - Python - Limited threads

o Global interpreter lock
o Multiprocessing library (shared nothing) common
o Most parallelism is done using threads in a callout module written in C++

e (o language - Lightweight threads (goroutines)
o Encourage lots of threads but also encourage message passing (channels) to avoid locks, etc.
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http://node.js

Closure in JavaScript

let globalvar = 1;
function localFunc(argVar) {
let localVar = 0;
function embedFunc() {return ++localVar + argVar + globalVar;}

return embedFunc;

}
let myFunc = localFunc(10);
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Promises in JavaScript

async function doIlt(fileName) {
let file = await ReadFile(fileName);
let data = await doSomethingOnData(file);
let moreData = await doSomethingMoreOnData(data);
return finalizeData(moreData);
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Node.|js example using callback functions.

net.createServer(function (socket) {
socket.on('data', function (fileName) {
fs.readFile(fileName.toString(), function (error, fileData) {
if (lerror) {
socket.write(fileData); // Writing a Buffer
} else {
socket.write(error.message); // Writing a String
}
socket.end();
1)

})s
}).1listen(4000);
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http://node.js

Callback Hell

Callback hell - TJ Holowaychuk's why Node sucks:

. you may get duplicate callbacks

. you may not get a callback at all (lost in limbo)
. you may get out-of-band errors

. emitters may get multiple “error” events

. missing “error” events sends everything to hell
. often unsure what requires “error” handlers

. “error” handlers are very verbose

. callbacks suck
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