10/2 CS240 - Threads &
Events

0000000000000000000000000



Announcements

For next class (Tuesday 10/5)

1. Read: Eliminating Receive Livelock in an Interrupt-Driven Kernel

2. Submit answers to reading questions (see course schedule) before class

When saying something in class, please state your first name the first time you
say something.

CS240 Lecture Notes Fall 2025


https://web.stanford.edu/class/cs240/readings/livelock.pdf

Paper Backgrounds

e \Why Threads Are A Bad Idea (for most purposes)

o 1996 Invited conference talk
o Most machines uniprocessors at the time

e \Why Events Are A Bad ldea (for high-concurrency servers)

o 2003 HotOS paper
o Former event advocates argue for threads

e Cooperative Task Management without Manual Stack Management

or, Event-driven Programming is Not the Opposite of Threaded Programming

o 2002 paper from Microsoft Research
o Based on experience building event and thread systems

CS240 Lecture Notes Fall 2025



What is the concurrency in this Linux/Mac code?

#include <stdio.h>

int main(void) {

char *str = "Hello, world!\n";

// Could some other execution happen between these statements?
printf(str);

return 9;

CS240 Lecture Notes Fall 2025



Threads vs Events: Explain these figures

Shared state Event
(memory, files, etc.) Loop

0000 O

i

Event Handlers

CS240 Lecture Notes Fall 2025



What were the metrics used to evaluate thread and events

CS240 Lecture Notes Fall 2025



Problems with Threads?

CS240 Lecture Notes Fall 2025



Problem with Events?

CS240 Lecture Notes Fall 2025



CS142: Threads versus Events using Callbacks

Threads:

request = readRequest(socket);
reply = processRequest(request);

sendReply(socket, reply);

Events with callbacks:

readRequest(socket, doneRead);

function doneRead(request) {
processRequest(request, doneProcess);

}

function doneProcess(reply) {
sendReply(socket, reply, doneSend);

}

function doneSend(errorCode) {
doneCb(errorCode)

}

CS240 Lecture Notes Fall 2025



CS142: Threads versus Events using Callbacks

Threads:

request = readRequest(socket);
reply = processRequest(request);

sendReply(socket, reply);

Events with callbacks:

readRequest(socket, function(request) {
processRequest(request,
function (reply) {
sendReply(socket,reply,doneCb);

})s
})s

CS240 Lecture Notes Fall 2025



Which one (thread or events) is harder to debug?

CS240 Lecture Notes Fall 2025



Which would is better from a Software Engineering point

e Threads
e Events

Metrics:

Understandability?

System evolution?

CS240 Lecture Notes Fall 2025



Software evolution: routine starts to block

function () {

// access shared data
routine()
// access shared data

CS240 Lecture Notes Fall 2025



According to Ousterhout: When should you use threads?

Do the other papers agree with him?

CS240 Lecture Notes Fall 2025



What are user level threads?

Why are they good?

CS240 Lecture Notes Fall 2025



What is hard about having a large number of threads?

CS240 Lecture Notes Fall 2025



Explain axis of this graph

oA
_— :
s E “multithreaded”
@]
=
o)) ©
©
<
©
=
x _
(q'; ©
" 5
©
=
>
serial cooperative preemptive

task management

CS240 Lecture Notes Fall 2025



What did you think of the Continuation code?

Section 3.1

CS240 Lecture Notes Fall 2025



What is stack ripping?

What are closures and how are they related to stack ripping?

CS240 Lecture Notes Fall 2025



/O management

e synchronous
e asynchronous

CS240 Lecture Notes Fall 2025



Data partitioning

e Coloring techniques?

CS240 Lecture Notes Fall 2025



Concurrency in the today's computing environments

e \Web - JavaScript - All in on events

o Both in the browser and server (Node.js)
o Language has closures and support for continuations (Promises)

e Al - Python - Limited threads

o Global interpreter lock
o Multiprocessing library (shared nothing) common
o Most parallelism is done using threads in a callout module written in C++

e (o language - Lightweight threads (goroutines)
o Encourage lots of threads but also encourage message passing (channels) to avoid locks, etc.

CS240 Lecture Notes Fall 2025


http://node.js

Closure in JavaScript

let globalvar = 1;
function localFunc(argVar) {
let localVar = 0;
function embedFunc() {return ++localVar + argVar + globalVar;}

return embedFunc;

}
let myFunc = localFunc(10);

CS240 Lecture Notes Fall 2025



Promises in JavaScript

async function doIlt(fileName) {
let file = await ReadFile(fileName);
let data = await doSomethingOnData(file);
let moreData = await doSomethingMoreOnData(data);
return finalizeData(moreData);

CS240 Lecture Notes Fall 2025



Node.|js example using callback functions.

net.createServer(function (socket) {
socket.on('data', function (fileName) {
fs.readFile(fileName.toString(), function (error, fileData) {
if (lerror) {
socket.write(fileData); // Writing a Buffer
} else {
socket.write(error.message); // Writing a String
}
socket.end();
1)

})s
}).1listen(4000);

CS240 Lecture Notes Fall 2025


http://node.js

Callback Hell

Callback hell - TJ Holowaychuk's why Node sucks:

. you may get duplicate callbacks

. you may not get a callback at all (lost in limbo)
. you may get out-of-band errors

. emitters may get multiple “error” events

. missing “error” events sends everything to hell
. often unsure what requires “error” handlers

. “error” handlers are very verbose

. callbacks suck

ONO O WN -

CS240 Lecture Notes Fall 2025



