11/18 CS240 - Salus

0000000000000000000000000

Announcements

For next class (Thursday 11/20)

1. Read: Efficient Memory Management for Large Language Model Serving with Paged Attention
2. Submit answers to reading questions (see course schedule) before class

CS240 Lecture Notes Fall 2025

https://web.stanford.edu/class/cs240/readings/vllm.pdf

Paper

e Salus: Fine-Grained GPU Sharing Primitives for Deep Learning Applications
o 2020 MLSys - Third Conference on Machine Learning and Systems
o Early systems paper GPUs as OS |/0 devices doing machine learning workloads

CS240 Lecture Notes Fall 2025

https://web.stanford.edu/class/cs240/readings/salus.pdf

Streams

Thread Execution Control Unit

e \ o
FURCI0N U 1 FuBcon Lt

Merecty Nereixy

Device Memory

CS240 Lecture Notes Fall 2025

Context switch overheads: CPUs vs GPUs

CS240 Lecture Notes Fall 2025

Python App with TF calls

- TensorFlow library

/\/\

Nvidia Cuda libraries

. Y._____0S

: Nvidia Device Driver |

______ sotelin
GPU Device

Deep Learning Training Job

def training_step(batch_x, batch_y, stream):

PERSISTENT (lives across all iterations) # —-——- forward pass —--——
W = gpu_alloc(shape=..., kind="weights") # model parameters logits = forward(batch_x, stream) # ephemeral activations
opt_state = gpu_alloc(shape=..., kind="opt") # optimizer state loss = gpu_alloc(shape=..., kind="activation")
launch_kernel("softmax_xentropy",
def forward(x, stream): inputs=[logits, batch_y]
EPHEMERAL activations inside an iteration output=loss,
al = gpu_alloc(shape=..., kind="activation") stream=stream)
launch_kernel("matmul", inputs=[x, W], output=al, stream=stream)
--—- backward pass —-——-
a2 = gpu_alloc(shape=..., kind="activation") grad_W = gpu_alloc(shape=..., kind="gradient")
launch_kernel("relu", inputs=[al], output=a2, stream=stream) launch_kernel("backprop_wrt_W",

inputs=[loss, W],

return a2 # al, a2 freed after iteration ends output=grad_W,

stream=stream)
-——— optimizer update (uses persistent state) ----
launch_kernel("optimizer_update",

inputs=[W, grad_W, opt_statel,

output=W, # in-place update

stream=stream)

for epoch in range(num_epochs):
B g (-€pP) # At the xendx of this function:

for bat(_:hjx' batch_y in training_dataset: . # - loss, logits, activations, grad_W are EPHEMERAL » freed
training_step(batch_x, batch_y, stream=job_stream) # - W and opt_state remain PERSISTENT across iterations
--— 1teration boundary ---

CS240 Lecture Notes Fall 2025

Deep Learning Interference

for batch_x in inference_request_stream:
probs = inference_step(batch_x, stream=job_stream)
send_results_to_client(probs)
——— iteration boundary -——-

def inference_step(batch_x, stream):
EPHEMERAL activations only; no optimizer, no KV cache
logits = forward(batch_x, stream)

probs = gpu_alloc(shape=..., kind="activation")
launch_kernel("softmax", inputs=[logits], output=probs, stream=stream)

At the end of this call:

- activations + logits + probs are freed (EPHEMERAL)
- W 1s still resident in GPU memory (PERSISTENT)
return probs

CS240 Lecture Notes Fall 2025

Head of line (HOL) blocking?

Input i Switching fabric Output j

U2A3

s

431
FY21

CS240 Lecture Notes Fall 2025

1

2

3

Tl
1181

Can multiple jobs fit in device memory?

alexnet Average o 120G A
googlenet Il Peak % o 1
. . =0 80G -
inception3 =P
: : o)
inception4 £ 2 40G -
overfeat =g !
resnet101 GOB == ' ' ' ! '
resnet] 52 5 2 . > 6 7
resnet50)
seiilseg g 120G
speech S5 80G
superres =g
P B &g 40G
[}
vggll = 00B . T T i
vggl6 2 4 6 8
vegld I T T T T T T Tisy)
0.0 2.5 5.0 7.5 10.0 12.5 15.0 Figure 2. Part of the GPU memory usage trace showing the spa-
Mem ory Usa ge (GB) tiotemporal pattern when training resnet101_75 on NVIDIA

P100, using TensorFlow and PyTorch.

CS240 Lecture Notes Fall 2025

Salus memory management classifications

o 120G -
3 -
=5 80G A
=> 8

s 2

2 40G -
s

= 0B : . T

2 3 4 5 6 7
Time (s)

e How does Salus tell which are temporary allocations?

CS240 Lecture Notes Fall 2025

Lanes

e What is the Lane relationship with CUDA streams?
e \What type of allocations goes into Lanes?
e How is defragmentation handled?

EjobA ™ obB ™ JobC

Iteration

>

%

k-1 k
2| g
z 2 5| P
§ ‘ L%Q . /
i1 >

(a) Memory regions (b) Auto defrag. at iteration boundaries.

Figure 6. The memory layout of the GPU lane scheme.

CS240 Lecture Notes Fall 2025

User Script | User Script 2 User Script 3

Salus i e '

DL Framework

Salus
Adaptor

Scheduler @ l .: @ @ Memory
@ @ Manager

G

GPU

CS240 Lecture Notes Fall 2025

Algorithm 1 Find GPU Lane for Job

1:

Input: P: the job’s persistent memory requirement
E: the job’s ephemeral memory requirement
C': total memory capacity of the GPU
P;: persistent memory usage of existing job ¢
L;: lane size of existing lane j
LL: set of existing lanes
if), P,+P+3> L+ E<Cthen
lane < new GPU lane with capacity £
return lane
end if
forall j € L do
if L; > FE and is the best match then
return j
end if
end for

: for r € L in L, ascending order do

ifZiPi+P+Zij—LT+E§Cthen
L.+ F
return r

end if

: end for
: return not found

Explain code at lines 2, 6, 11.

Explain safety condition:

ZP + Z Jorlglgal}r(ll EJ)

job 1 lanel

CS240 Lecture Notes Fall 2025

C

Normalized
Per Iteration
Training Time

= = -~ v O

s 82T S5 HF S gz =22
£ 58 S 8 € - =58 & 8 5 ~ g
9w EE S8 8 g ¢ a d g B 0
" 288 z5588 %3

S o o ©° § § & @ Z

ODEE - =

Workloads

Figure 12. Per iteration time per workload in Salus, normalized by
that of TensorFlow. Only the largest batch size for each model is
reported, as other batch sizes have similar performance.

CS240 Lecture Notes Fall 2025

1.0 Y rrror e
T FIFO
Rosd 7 — B
O ; PACK
£l T FAIR
0.0 I!__........': I I I
0 5000 10000 15000
JCT (s)

Figure 7. CDFs of JCTs for all four scheduling policies.

Sched. Makespan Avg. Avg. 95%
Queuing JCT JCT

FIFO 3034min 167.6min 170.6min 251.1 min
SRTF 306.0 min 28.6 min 534 min 217.0 min
PACK 2874 min 1299min 145.5min 266.1 min
FAIR 301.6 min 58.5 min 96.6 min 281.2 min

Table 1. Makespan and aggregate statistics for different schedulers.

Salus: Fine-Grained GPU Sharing Primitives for Deep Learning Applications

L] I !

g =8 =°©
Papadu SdD JO #

(8 o 8 0 o

T

(sur) Aduaje]

snjes

SdW

4L

6188A
QaTA

1 188A

aeA
sauadns
basgbas
(Siausal
7S 1ausas
[0 1ausas
JEJIDAQ
prondasu
guondaom
1auadood

1PuxIE

CS240 Lecture Notes Fall 2025

=
é 500 Salus
o Il TF
S
7z 250 =
v
<
= 0
superres 128 resnet50 50

Figure 11. Makespan of two hyper-parameter tuning multi-jobs
each of which consists of 300 individual jobs.

CS240 Lecture Notes Fall 2025

