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Announcements

For next class (Thursday 11/20)

1. Read: Efficient Memory Management for Large Language Model Serving with Paged Attention
2. Submit answers to reading questions (see course schedule) before class
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https://web.stanford.edu/class/cs240/readings/vllm.pdf

Paper

e Salus: Fine-Grained GPU Sharing Primitives for Deep Learning Applications
o 2020 MLSys - Third Conference on Machine Learning and Systems
o Early systems paper GPUs as OS |/0 devices doing machine learning workloads
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https://web.stanford.edu/class/cs240/readings/salus.pdf
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Context switch overheads: CPUs vs GPUs
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Python App with TF calls

- TensorFlow library
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Deep Learning Training Job

def training_step(batch_x, batch_y, stream):

# PERSISTENT (lives across all iterations) # —-——- forward pass —--——
W = gpu_alloc(shape=..., kind="weights") # model parameters logits = forward(batch_x, stream) # ephemeral activations
opt_state = gpu_alloc(shape=..., kind="opt") # optimizer state loss = gpu_alloc(shape=..., kind="activation")
launch_kernel("softmax_xentropy",
def forward(x, stream): inputs=[logits, batch_y]
# EPHEMERAL activations inside an iteration output=loss,
al = gpu_alloc(shape=..., kind="activation") stream=stream)
launch_kernel("matmul", inputs=[x, W], output=al, stream=stream)
# --—- backward pass —-——-
a2 = gpu_alloc(shape=..., kind="activation") grad_W = gpu_alloc(shape=..., kind="gradient")
launch_kernel("relu", inputs=[al], output=a2, stream=stream) launch_kernel("backprop_wrt_W",

inputs=[loss, W],

return a2 # al, a2 freed after iteration ends output=grad_W,

stream=stream)
# -——— optimizer update (uses persistent state) ----
launch_kernel("optimizer_update",

inputs=[W, grad_W, opt_statel,

output=W, # in-place update

stream=stream)

for epoch in range(num_epochs):
B g ( -€pP ) # At the xendx of this function:

for bat(_:hjx' batch_y in training_dataset: . # - loss, logits, activations, grad_W are EPHEMERAL » freed
training_step(batch_x, batch_y, stream=job_stream) # - W and opt_state remain PERSISTENT across iterations
# --— 1teration boundary ---
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Deep Learning Interference

for batch_x in inference_request_stream:
probs = inference_step(batch_x, stream=job_stream)
send_results_to_client(probs)
# ——— iteration boundary -——-

def inference_step(batch_x, stream):
# EPHEMERAL activations only; no optimizer, no KV cache
logits = forward(batch_x, stream)

probs = gpu_alloc(shape=..., kind="activation")
launch_kernel("softmax", inputs=[logits], output=probs, stream=stream)

# At the end of this call:

# - activations + logits + probs are freed (EPHEMERAL)
# - W 1s still resident in GPU memory (PERSISTENT)
return probs
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Head of line (HOL) blocking?
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Can multiple jobs fit in device memory?
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Mem ory Usa ge (GB) tiotemporal pattern when training resnet101_75 on NVIDIA

P100, using TensorFlow and PyTorch.
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Salus memory management classifications
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e How does Salus tell which are temporary allocations?
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Lanes

e What is the Lane relationship with CUDA streams?
e \What type of allocations goes into Lanes?
e How is defragmentation handled?
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(a) Memory regions  (b) Auto defrag. at iteration boundaries.

Figure 6. The memory layout of the GPU lane scheme.
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Algorithm 1 Find GPU Lane for Job

1:

Input: P: the job’s persistent memory requirement
E: the job’s ephemeral memory requirement
C': total memory capacity of the GPU
P;: persistent memory usage of existing job ¢
L;: lane size of existing lane j
LL: set of existing lanes
if), P,+P+3> L+ E<Cthen
lane < new GPU lane with capacity £
return lane
end if
forall j € L do
if L; > FE and is the best match then
return j
end if
end for

: for r € L in L, ascending order do

ifZiPi+P+Zij—LT+E§Cthen
L.+ F
return r

end if

: end for
: return not found

Explain code at lines 2, 6, 11.

Explain safety condition:

ZP + Z Jorlglgal}r(ll EJ)

job 1 lanel
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Figure 12. Per iteration time per workload in Salus, normalized by
that of TensorFlow. Only the largest batch size for each model is
reported, as other batch sizes have similar performance.
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Figure 7. CDFs of JCTs for all four scheduling policies.

Sched. Makespan Avg. Avg. 95%
Queuing JCT JCT

FIFO 3034min 167.6min 170.6min 251.1 min
SRTF 306.0 min 28.6 min 534 min 217.0 min
PACK 2874 min 1299min 145.5min 266.1 min
FAIR  301.6 min 58.5 min 96.6 min 281.2 min

Table 1. Makespan and aggregate statistics for different schedulers.



Salus: Fine-Grained GPU Sharing Primitives for Deep Learning Applications
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Figure 11. Makespan of two hyper-parameter tuning multi-jobs
each of which consists of 300 individual jobs.
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