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Announcements 

● No class or office hours next week (Stanford's Thanksgiving holiday week)

For next class (Tuesday 12/02)

1. Read:  Hints for Computer System Design
2. No reading questions 

https://web.stanford.edu/class/cs240/readings/hints.pdf
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Paper 

● Efficient Memory Management for Large Language Model Serving with Paged Attention
○ SOSP 2023 - The 29th ACM Symposium on Operating Systems Principles
○ vLLM is a widely used system inference engine for large language models

https://web.stanford.edu/class/cs240/readings/vllm.pdf
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Paper background - Transformer models

● 2017 Google paper: Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, 
Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you 
need.  Proceedings of the 31st International Conference on Neural Information 
Processing Systems (NIPS 2017).

○ Targeted machine translation; evaluated on English→German and English→French
○ Can be expressed as matrix operations

● 2018 OpenAI paper:   Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya 
Sutskever. Improving Language Understanding by Generative Pre-Training. Posted 
to the internet

○ GPT-1: Autoregressive Transformer model 
■ Input: prompt. Output: next word. Repeat.

○ Lots of repeat calculations:  K/V cache

● Led to ChatGPT, Midjournay, Cursor, ….
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Autoregressive transformer and the K/V cache

● Autoregressive transformer: next token based on all previous tokens
○ K/V cache holds previous token calculations (keys and values) 
○ Self-attention:  O(t3) -> O(t2)

● K/V cache size:  
○ Function of model: 

■ Layers:  12 - 40 
■ Attention heads: 12 - 40
■ Attention head dimension: 64 - 256 
■ Hidden size: 768 - 5120
■ Precision: 2 - 4 bytes

○ Number of tokens
○ Relatively big: ½ - 1 MB per token

● In inference, the number of generated tokens is unknown in advance 
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Complex decoding algorithms and KV cache

● Parallel Sampling
● Beam Search
● Speculative Decoding

How do these stress contiguous KV-cache allocation?
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Compute-bound vs Memory-bound?

● What is compute-bound in an operating system paper?

● Paper says: "This sequential generation process makes the workload 
memory-bound, ….".  

○ What does that mean?

● How can batching help with memory-bound jobs?
○ Adding more memory-bound jobs makes the situation better?



CS240 Lecture Notes Fall 2025

Batching inference jobs 

● Challenge:  Memory footprint of the inference job unknown
○ Typical solution:  assume a max number of tokens, allocation cap the KV cache
○ Define: External fragmentation, Internal fragmentation, Reservation 

●
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Measuring KV cache memory usage
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Autoregressive generation modes 

● Prompt tokens - Can be efficiently computed in parallel 
○ KV cache can be efficiently filled 

● Autoregression tokens - Token at a time compute of KV cache entries
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vLLM system overview
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PagedAttention

● Break VC cache into fixed-sized blocks 

● Modelled after virtual memory
○ What do you think of that analogy? 

● Inherent advantages over the contiguous allocation of KV caches?
○ Disadvantage? 
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PageAttention implementation
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Handling two requests from the same memory pool
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Parallel sampling example
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Beam search with k=4
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Shared prefix - system prompt support
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Mixed decoding methods support

Explain:

vLLM conceals the complex memory sharing between different sequences via a 
common mapping layer.
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Scheduling and Preemption 

● Why?: 
When vLLM needs to preempt requests, it ensures that the earliest arrived requests are served first 
and the latest requests are preempted first.
Once it preempts a sequence and evicts its blocks, vLLM stops accepting new requests until all 
preempted sequences are completed

● Memory pressure
○ Which blocks does it evict?   

■ Sequence groups? 
○ Swapping vs Recomputation?
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Kernel-level Optimization?

● Transparency?  
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Does it work?
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Evaluation metric:  Normalized latency? time/length

●
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Memory saving
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Final thoughts

● vLLM is incompatible with existing kernels, yet still won. How?


