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Announcements

e No class or office hours next week (Stanford's Thanksgiving holiday week)
For next class (Tuesday 12/02)

1. Read: Hints for Computer System Design
2. No reading questions
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https://web.stanford.edu/class/cs240/readings/hints.pdf

Paper

® Efficient Memory Management for Large Language Model Serving with Paged Attention
o SOSP 2023 - The 29th ACM Symposium on Operating Systems Principles
o VLLM is a widely used system inference engine for large language models
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https://web.stanford.edu/class/cs240/readings/vllm.pdf

Paper background - Transformer models

e 2017 Google paper: Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Lukasz Kaiser, and lllia Polosukhin. Attention is all you
need. Proceedings of the 31st International Conference on Neural Information
Processing Systems (NIPS 2017).

o Targeted machine translation; evaluated on English—German and English—French
o Can be expressed as matrix operations

e 2018 OpenAl paper: Alec Radford, Karthik Narasimhan, Tim Salimans, llya
Sutskever. Improving Language Understanding by Generative Pre-Training. Posted

to the internet
o  GPT-1: Autoregressive Transformer model
m Input: prompt. Output: next word. Repeat.
o Lots of repeat calculations: K/V cache

e Ledto ChatGPT, Midjournay, Cursor, ....
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Autoregressive transformer and the K/V cache

e Autoregressive transformer: next token based on all previous tokens
o K/V cache holds previous token calculations (keys and values)
o Self-attention: O(t3) -> O(t?)

e K/V cache size:

o  Function of model:
m Layers: 12-40
m Attention heads: 12 - 40
m Attention head dimension: 64 - 256
m Hidden size: 768 - 5120
m Precision: 2 - 4 bytes

o Number of tokens

o Relatively big: /2 - 1 MB per token

e Ininference, the number of generated tokens is unknown in advance
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Complex decoding algorithms and KV cache

e Parallel Sampling
e Beam Search
e Speculative Decoding

How do these stress contiguous KV-cache allocation?
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Compute-bound vs Memory-bound?

e \What is compute-bound in an operating system paper?

e Paper says: "This sequential generation process makes the workload
memory-bound, ....".
o What does that mean?

e How can batching help with memory-bound jobs?
o Adding more memory-bound jobs makes the situation better?
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Batching inference jobs

e Challenge: Memory footprint of the inference job unknown

o Typical solution: assume a max number of tokens, allocation cap the KV cache
o Define: External fragmentation, Internal fragmentation, Reservation

o
1 slot for 2 slots future used ) 1 slot future used
generated token (reserved) External fragmentation (reserved)
—Ae ————— =
Four | score | and | seven | years | ago (VI 1Gh o) elielgli | forth || <eos> | <resv> ...  <resv> You | only | live | once [RS=Ie i (=N NNNRS (-1 Vs
~ 7 N - 2% N
7 KV cache states for 2038 slots never used 3 KV cache states for 507 slots never used
request A's prompt (internal fragmentation) request B’s prompt (Internal fragmentation)
Request A Request B
current iteration current iteration
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Measuring KV cache memory usage

Parameters
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Autoregressive generation modes

e Prompt tokens - Can be efficiently computed in parallel
o KV cache can be efficiently filled

e Autoregression tokens - Token at a time compute of KV cache entries
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vLLM system overview

Scheduler

KV Cache Manager

Block tables

N

CPU Block
Allocator

GPU Block
Allocator

Worker 0
Cache Model @h
Engine Shard 0 D=
Worker 1
Cache Model @h
Engine Shard 1 Ko e
Worker N - 1
Cache Model @t
Engine Shard N - 1 | RS2
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PagedAttention

e Break VC cache into fixed-sized blocks

e Modelled after virtual memory
o  What do you think of that analogy?

e Inherent advantages over the contiguous allocation of KV caches?
o Disadvantage?
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PageAttention implementation

Block 0

Block 1

Block 2

Block 3

Request Prompt: “Four score and seven years ago our’
A Outputs: “fathers” — “brought’ — ...
Logical KV blocks
® Block Table
Four | score and seven -
Physical block # filled
[©) [©) (?f) h number
years ago our athers \@\ 7 s
%rou ht o 03440
= O\ @3 ®1

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Block 8
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(on GPU DRAM)
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Handling two requests from the same memory pool

Physical KV blocks

Block 0
Request Request
A B
Block 1 | years | ago our | fathers
Logical KV blocks Block 2 of times Logical KV blocks
Block 0 | Four | score and seven Block 3 | brought Block 0 It was the best
Block 1 | years ago our | fathers Block 4 Block 1 of times
Block 2 | brought Block 5 It was the best Block 2
Block 3 Block 6
Block 7 | Four | score | and | seven
Block 8
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Parallel sampling example

Physical KV blocks
Block 0 l
Ref count: 2 — 1
Sample Sample
A1 4Block igl years | ago | our |mothers h
Logical KV blocks Block{2 |Copy-on-write Logical KV blocks
Block0 | Four | score | and | seven |/ .Block years | ago our | fathers| \|Block0 | Four | score | and | seven
Block 1 | years | ago our |fathers \ Block 4 Block 1 | years | ago our |mothers
Block 5
Block 6
Block 7 | Four | score and | seven
Block 8
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Beam search with k=4

Beam candidate 0

Beam candidate 1

Beam candidate 2

Beam candidate 3

Block 5

Block 0

Block 1

Block 3

Block 9

Block 6

Block 10

- Block 7

Block 2

X

X

Block 4

L

Block 8

CS240 Lecture Notes Fall 2025

Block 11

Block 12




Shared prefix - system prompt support

Shared prefix

Task input

Task output

Sequence A
Prompt

Translate English to French:

“sea otter” => “loutre de mer”
‘peppermint” => “menthe poivrée”
“plush girafe” => “girafe en peluche”

Sequence B
Prompt

“cheese” =>

Translate English to French:

“sea otter” => “loutre de mer”
‘peppermint” => “menthe poivrée”
“plush girafe” => “girafe en peluche”

Sequence A
LLM output

9 love you” =>

‘fromage”

Sequence B
LLM output

“Je t'amie”
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Mixed decoding methods support

Explain:

VLLM conceals the complex memory sharing between different sequences via a
common mapping layer.
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Scheduling and Preemption

o Why?:

When vLLM needs to preempt requests, it ensures that the earliest arrived requests are served first

and the latest requests are preempted first.

Once it preempts a sequence and evicts its blocks, vLLM stops accepting new requests until all

preempted sequences are completed

e Memory pressure

. . . 140 4 —e— Recompute
o  Which blocks does it evict? 1201 —— Swap in
——— —e— Swap out
m  Sequence groups? g —e— Swap in + out
. . = 80
o Swapping vs Recomputation? g | \
N
40 o S — P
20 1 \.\\‘hra.,*,_,
0= T T T T T T T T
1 2 4 8 16 32 64 128 256
Block size
(a) Microbenchmark
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Kernel-level Optimization?

e Transparency?
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Does it work?
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Figure 13. Average number of batched requests when serv-
ing OPT-13B for the ShareGPT (2 reqs/s) and Alpaca (30

reqs/s) traces.
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Evaluation metric: Normalized latency? time/length

- —— FasterTransformer  —<— Orca (Max) — Orca (Pow2) —=— Orca (Oracle) —e— VLLM
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Figure 12. Single sequence generation with OPT models on the ShareGPT and Alpaca dataset
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Memory saving
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Figure 15. Average amount of memory saving from sharing
KV blocks, when serving OPT-13B for the Alpaca trace.
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(a) Latency of attention kernels. (b) End-to-end latency with dif-
ferent block sizes.

Figure 18. Ablation experiments.
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Figure 17. Performance on chatbot workload.
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Final thoughts

e VLLM is incompatible with existing kernels, yet still won. How?
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