
CS240 Lecture Notes Fall 2025

11/20 CS240 - vLLM

CS240 Lecture Notes Fall 2025

Announcements

● No class or office hours next week (Stanford's Thanksgiving holiday week)

For next class (Tuesday 12/02)

1. Read: Hints for Computer System Design
2. No reading questions

https://web.stanford.edu/class/cs240/readings/hints.pdf

CS240 Lecture Notes Fall 2025

Paper

● Efficient Memory Management for Large Language Model Serving with Paged Attention
○ SOSP 2023 - The 29th ACM Symposium on Operating Systems Principles
○ vLLM is a widely used system inference engine for large language models

https://web.stanford.edu/class/cs240/readings/vllm.pdf

CS240 Lecture Notes Fall 2025

Paper background - Transformer models

● 2017 Google paper: Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Proceedings of the 31st International Conference on Neural Information
Processing Systems (NIPS 2017).

○ Targeted machine translation; evaluated on English→German and English→French
○ Can be expressed as matrix operations

● 2018 OpenAI paper: Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever. Improving Language Understanding by Generative Pre-Training. Posted
to the internet

○ GPT-1: Autoregressive Transformer model
■ Input: prompt. Output: next word. Repeat.

○ Lots of repeat calculations: K/V cache

● Led to ChatGPT, Midjournay, Cursor, ….

CS240 Lecture Notes Fall 2025

Autoregressive transformer and the K/V cache

● Autoregressive transformer: next token based on all previous tokens
○ K/V cache holds previous token calculations (keys and values)
○ Self-attention: O(t3) -> O(t2)

● K/V cache size:
○ Function of model:

■ Layers: 12 - 40
■ Attention heads: 12 - 40
■ Attention head dimension: 64 - 256
■ Hidden size: 768 - 5120
■ Precision: 2 - 4 bytes

○ Number of tokens
○ Relatively big: ½ - 1 MB per token

● In inference, the number of generated tokens is unknown in advance

CS240 Lecture Notes Fall 2025

Complex decoding algorithms and KV cache

● Parallel Sampling
● Beam Search
● Speculative Decoding

How do these stress contiguous KV-cache allocation?

CS240 Lecture Notes Fall 2025

Compute-bound vs Memory-bound?

● What is compute-bound in an operating system paper?

● Paper says: "This sequential generation process makes the workload
memory-bound, ….".

○ What does that mean?

● How can batching help with memory-bound jobs?
○ Adding more memory-bound jobs makes the situation better?

CS240 Lecture Notes Fall 2025

Batching inference jobs

● Challenge: Memory footprint of the inference job unknown
○ Typical solution: assume a max number of tokens, allocation cap the KV cache
○ Define: External fragmentation, Internal fragmentation, Reservation

●

CS240 Lecture Notes Fall 2025

Measuring KV cache memory usage

CS240 Lecture Notes Fall 2025

Autoregressive generation modes

● Prompt tokens - Can be efficiently computed in parallel
○ KV cache can be efficiently filled

● Autoregression tokens - Token at a time compute of KV cache entries

CS240 Lecture Notes Fall 2025

vLLM system overview

CS240 Lecture Notes Fall 2025

PagedAttention

● Break VC cache into fixed-sized blocks

● Modelled after virtual memory
○ What do you think of that analogy?

● Inherent advantages over the contiguous allocation of KV caches?
○ Disadvantage?

CS240 Lecture Notes Fall 2025

PageAttention implementation

CS240 Lecture Notes Fall 2025

Handling two requests from the same memory pool

CS240 Lecture Notes Fall 2025

Parallel sampling example

CS240 Lecture Notes Fall 2025

Beam search with k=4

CS240 Lecture Notes Fall 2025

Shared prefix - system prompt support

CS240 Lecture Notes Fall 2025

Mixed decoding methods support

Explain:

vLLM conceals the complex memory sharing between different sequences via a
common mapping layer.

CS240 Lecture Notes Fall 2025

Scheduling and Preemption

● Why?:
When vLLM needs to preempt requests, it ensures that the earliest arrived requests are served first
and the latest requests are preempted first.
Once it preempts a sequence and evicts its blocks, vLLM stops accepting new requests until all
preempted sequences are completed

● Memory pressure
○ Which blocks does it evict?

■ Sequence groups?
○ Swapping vs Recomputation?

CS240 Lecture Notes Fall 2025

Kernel-level Optimization?

● Transparency?

CS240 Lecture Notes Fall 2025

Does it work?

CS240 Lecture Notes Fall 2025

Evaluation metric: Normalized latency? time/length

●

CS240 Lecture Notes Fall 2025

Memory saving

CS240 Lecture Notes Fall 2025

CS240 Lecture Notes Fall 2025

CS240 Lecture Notes Fall 2025

Final thoughts

● vLLM is incompatible with existing kernels, yet still won. How?

