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ABSTRACT

We propose a new configuration language, component and service
library, and compiler that make it easier to develop efficient sensor
network applications. Our goal is the construction of smart applica-
tion service libraries: high-level libraries that implement concepts
like routing trees and periodic sensing, and that combine automat-
ically into efficient programs. Important language features include
flexible control over component sharing and transitive arrow con-
nections, which let independently-implemented services knit them-
selves into integrated control flow paths. Our language, library, and
compiler are collectively called SNACK (Sensor Network Applica-
tion Construction Kit). We describe them, and present and evaluate
a simple SNACK-based multihop data collection application. This
application uses SNACK language features to provide both simplic-
ity (excluding reusable service definitions, its description is three
lines long) and efficiency (it performs comparably to the well-known
Surge application).

Categories and Subject Descriptors: D.3.2 [Software]: Language
Classifications—Specialized application languages
General Terms: Languages, Design, Performance
Keywords: Configuration Languages, Sensor Networks, TinyOS,
NesC

1 INTRODUCTION

An increasing number of increasingly complex deployment-grade
applications are being developed for the mica sensor platforms [3,
11, 12]. These applications share the goal of efficient energy and
resource usage, since efficiency can greatly prolong the life of a net-
work. Radio communication is often the overriding long-term cost
on untethered and unmanned systems [1, 15], so protocols have been
designed to minimize bits sent and received. (Other potential energy
consumers, such as the EEPROM and some sensors, also require
care.) On the mica2, which has 128 KB of ROM and 4 KB of RAM,
memory allocation must be minimized and code must be compiled
to a small binary.

Unfortunately, efficiency comes at the great cost of program com-
plexity. Application developers typically reach into and manipulate
system-level code to provide optimized service for an application’s
needs, but this makes sensor systems more fragile overall.

Overcoming complexity requires language support. Just as high-
level languages were developed when the complexity of program-
ming with assembly language became too difficult for humans, com-
ponent programming models such as nesC’s [6] greatly reduce the
complexity of embedded sensing systems development. Unfortu-
nately for application developers, component models don’t yet sup-
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port the construction of efficient, independent application-level ser-
vice libraries that can be reused from one application to the next. In-
dividual components can be reused, of course, but outside low-level
services like a radio stack, collections of components are difficult to
reuse; and manipulating individual components is far too low-level
for non-computer scientists.

This lack of reusability is generally due to the performance con-
straints under which sensor applications must run, since the cross-
dependencies between services, and between services and lower-
level components, necessary to gain efficiency simultaneously pre-
vent modularity. For example, an efficient sensor application might
want to aggregate sent data onto as few packets as possible, to reduce
expensive transmission costs. This complicates library construction:
How can two libraries, written independently, cooperate to share a
single outgoing messaging path, and make that path activate at some
rate acceptable to both libraries?

To address these problems, we have developed a new component
composition language for sensor networks, and a library of compo-
nents and services designed from the ground up to take advantage of
that language’s features. The resulting system is called SNACK, the
Sensor Network Application Construction Kit. The SNACK system
leverages nesC—its base components are written in nesC, and its
compiler generates a nesC configuration and several nesC modules—
but its language interface and compilation techniques are indepen-
dent, and would continue to apply even if the underlying language
were changed. SNACK’s goal is the construction of smart libraries
that weave themselves together into efficient applications: it should
be possible to write a very short application description that is then
compiled into a tightly-integrated, efficient application. For exam-
ple, to write a simple multihop data collection application that peri-
odically takes temperature and light readings and forwards the re-
sulting data up to some sink, the application programmer should
write two simple lines of code, roughly like:

SenseTemp -> [collect] RoutingTree;
SenseLight -> [collect] RoutingTree;

With SNACK’s language, component and service library, and com-
piler, this code, and the generic services to which it refers, can be
expanded into the tight, fast configuration shown in Figure 1.

Section 2 describes the SNACK language in detail, concentrating
on its features that support smart library construction: configuration-
level tunable parameters, controlled sharing of components and ap-
plication-level services, and transitive connections, which construct
integrated component paths from independent parts. Section 3 then
presents our component and service library, which uses these lan-
guage features to provide a higher-level API than current languages,
and Section 4 shows how the language is compiled. To evaluate
SNACK, we examine the performance and resource usage of sev-
eral SNACK applications, including a more-developed version of
Figure 1 (see Figure 2 for the code). This SNACK Forwarder ap-
plication performs on par with a hand-configured application called
Surge, despite its origins in very-high-level code. The remaining sec-
tions discuss related and future work and conclude.
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Figure 1—Expansions of a SNACK multihop data collection application (SNACK Forwarder, or SF). At the top, the application is specified
by connecting a few application-level services. The middle stages expand those services into their components. The bottom is a subset of the
maximally-shared expansion produced by the SNACK compiler. White components are derived from the light-sampling part of the applica-
tion, light-grey components from the temperature-sampling half; dark-grey components are the result of the compiler merging compatible
components from both halves into single instances. Dotted and thick arrows are transitive connections (Section 2.6) for timers and message
processing, respectively. Figure 2 shows the SNACK code corresponding to this figure; Section 5 evaluates that code.
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2 LANGUAGE DESIGN
Again, our goal is a smart service library of relatively easy-to-

write services that combine automatically into efficient sensor net-
work applications. We imagine three types of programmers interact-
ing to develop an application. First, systems programmers use nesC,
or another low-level programming language, to develop reusable
components that interact with sensor hardware, send messages, han-
dle pools of memory, and so forth. Second, service programmers
combine those components into parameterized services, or compo-
nent combinations, that implement higher-level semantics such as
routing trees, periodic sensing and alerting, and so forth. Finally,
application programmers select a handful of services to run on a
given network, and define how those services will interact. Appli-
cation programming should be simple enough for scientists to do,
powerful enough to support a wide range of applications, and gener-
ate efficient enough programs to compete with hand-written code.

We first investigated whether nesC alone could reach this goal.
The nesC language [6] is the current state of the art in sensor net-
work programming; its component model, based on units [4], is a
clear advance over earlier techniques. However, nesC programs are
still hard to write, and existing services tend to implement low-level
portions of the OS, such as the radio stack. Our analysis of exist-
ing nesC programs identified several issues preventing the develop-
ment of smart application-level service libraries, all of which we
addressed in SNACK. The most important are:

• State. Flexible control over object state is a key feature of object-
oriented application development. Memory space is at a premium
in embedded programming, however, making it important to share
state between components wherever possible. NesC therefore im-
plements the shared-state endpoint of the spectrum: components
of the same type always share state; any private state, such as
sensor values, timers, routing tables, and so forth, must be im-
plemented ad hoc (by either defining different component types
or using “parameterized interfaces”). This provides efficiency at
the expense of considerable programming burden. Straight object-
oriented programming, in contrast, defaults to separate state per
object; this simplifies some kinds of programming but makes shar-
ing and efficiency harder. SNACK, therefore, implements a new
middle point on the spectrum: Component instances can have pri-
vate state, but the SNACK compiler detects and takes advantage
of all possible sharing opportunities.

• Component parameters. Say that a sensing service wants to use
a routing tree whose internal timers are based on the sensing fre-
quency. Currently, such frequencies are buried in nesC source,
and must be set either at compile time (by #defines or enums) or
at run time. SNACK lets components and services define explicit
configuration-level parameters, making them easier to understand
and reuse. Additionally, SNACK parameters accept value ranges,
such as [0,∞) and [1, 10]. These flexible constraints facilitate
sharing, since components with overlapping parameter ranges may
be easier to find than components whose parameter values exactly
match.

• Control flow sharing. One way to optimize a sensor network ap-
plication is to drive multiple actions off a single shared trigger. For
example, imagine that two sensors want to send data up the same
routing tree. If the sensors can each attach their data to a single
message—if they can share a single control flow path for message
generation—this will reduce the number of messages sent by a
factor of two: a huge advantage. To support this, we need selected
control flow paths to be augmentable by other services. Unfortu-
nately, nesC and other common component configuration models

make this difficult, since every step in the control flow must be
explicitly defined. SNACK introduces a new connector, the tran-
sitive arrow ..>, designed specifically for control flow sharing,
which we call service weaving.

These language features are necessary to build smart libraries,
but not sufficient. In particular, a smart library can’t be constructed
solely of existing components, which were designed for nesC, not
SNACK. But the SNACK language facilitates new component de-
signs that, although cumbersome or difficult in straight nesC, take
advantage of SNACK patterns to make application programming
easier and more efficient. We describe such a new component set in
Section 3. Together, the language and these new components achieve
our goal: smart, high-level libraries that automatically combine into
efficient application configurations.

2.1 Syntax
A short example will illustrate SNACK syntax, which is based on

that of the Click modular router [8].

service Service {
src :: MsgSrc;
src [send:MsgRcv] -> filter :: MsgFilter -> [send] Network;
in [send:MsgRcv] -> filter;

}

“n :: T” declares an instance named n of a component type T .
An instance is effectively an object of the given type: instances with
different names have different private state (unless the SNACK com-
piler determines that the instances may be shared). This differs from
nesC, which has no explicit instances—all components of a given
type are shared. However, instances are sufficiently useful in practice
that nesC programmers implement them anyway, using tedious ad
hoc methods: state arrays or explicit code duplication (“CRCPacket”,
“RadioCRCPacket”, and “UARTNoCRCPacket”, for example). SNACK’s
explicit instances avoid the need for such workarounds, while its
compiler recaptures all relevant sharing. A component type can also
occur on its own, as with Network above; this declares a new anony-
mous instance of the given type.

“n[i:τ]” refers to an output interface on component n with name
i and interface type τ , “[i:τ]n” to an input interface. A component
“provides” its input interfaces and “uses” its output interfaces. The
interface type can be omitted when declaring a connection; alterna-
tively, if an interface type unambiguously identifies the interface, the
name can be omitted. SNACK supports chained connections (“a -
> b -> c ...”), which are equivalent to multiple connections. The
compiler can infer interface declarations in the middle of a chain
based on interface declarations at the ends.

Finally, a SNACK service, like a nesC configuration, is a collec-
tion of component declarations and connections that behaves like a
component. A service’s input and output interfaces are declared with
the in and out keywords; the components inside a service cannot be
accessed from outside except through explicit service interfaces.

2.2 Controlling Sharing
Although the user can declare different component instances with

n :: T syntax—or, frequently, by using a component type in dif-
ferent, independently-implemented services—the SNACK compiler
ultimately decides whether instances will have distinct implementa-
tions in the compiled program. Again, its preference is for sharing,
since this leads to smaller, more efficient code. For instance,

A[MsgRcv] -> Network; B[MsgRcv] -> Network;

is compiled to the equivalent of this:

n :: Network; A[MsgRcv] -> n; B[MsgRcv] -> n;
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Sometimes, though, instances should not be shared. For example,
components that contain service-internal state shouldn’t be shared
between services. The SNACK language controls component shar-
ing using three constructs. First, components with incompatible pa-
rameter values will not be shared. Second, connectedness constraints,
which restrict the number of times an interface can be connected,
can reduce sharing: if sharing two components would violate either
of their connectedness constraints, then the components will not be
shared. Third, the “my” keyword explicitly marks components in-
tended for exclusive use. Absent these constraints, the default is to
share; this follows nesC practice and encourages efficiency.

2.3 Parameters
SNACK components and services can take lists of named parame-

ters, which are values defined at initialization or compile time. Com-
mon examples include sensing periods, queue sizes, forwarding ta-
ble sizes, network diameters, moving-average stability parameters,
and so forth. Parameters provide a clean, unified interface for defin-
ing and documenting run-time constants, such as timeout values or
sampler rates; they also increase modularity, since services can sup-
ply values for their components’ parameters. (Currently, the appli-
cation programmer explicitly sets the values of all parameters, even
many hidden within services.) For example:

s1 :: MsgSrc(period = 10);
s2 :: MsgSrc; // use default value

Services can also take parameters, which are generally passed to
their components. A temperature sampling service incorporates a
generic ADC sensing component as follows:

service SmoothSenseTemp(period: max uint32_t $p = 1000) {
my sense :: SenseTemp(period = $p); ...
// Could also multiply by a constant: ’period = 2*$p’

}

In practice, users often want to restrict an initialization parameter
to some feasible range, without providing an exact value. SNACK
explicitly supports this; for instance, this sampling interval will take
a value between 20 and 60 seconds:

sense :: SenseTemp(period >= 20, period <= 60);

SNACK will choose a value within this range based on a per-param-
eter objective function, max (choose the high end of the range) or min
(choose the low end).

Loose parameter constraints let users say what they mean, and
broaden opportunities for component sharing. Two sampler instances
with parameter constraints of “period <= 60” and “period <= 30”
can be shared, for example, since the combination of their parame-
ter constraints has a solution (namely, “period <= 30”). SNACK will
not share instances with incompatible parameter constraints.

A program’s service and component parameter constraints form a
simple linear system, which the compiler solves in the obvious way.

2.4 Connectedness Constraints
Connectedness constraints determine the number of times a com-

ponent interface may be connected. There are four constraints: the
default, @any—the lack of constraint—means an interface can be
connected zero or more times, @once means it must be connected
exactly once, @most means at most once, and @least means at least
once.1 Connectedness constraints are assigned on component types—
when one designs an interface, one generally knows how many times
that interface should be used. The user may also explicitly restrict an
individual interface’s constraints; for example:

t :: TreeBuilderM [Put32 @most] -> ...

1The authors of nesC have informally proposed to support similar
semantics.

Connectedness constraints reduce configuration errors and pro-
vide useful documentation, but they also make some instances natu-
rally incompatible for sharing. For example, consider:

t1 :: TimeSrc(period = 10) [Timer] -> Sensor1;
t2 :: TimeSrc(period = 10) [Timer] -> Sensor2;

Sharing the two TimeSrcs will result in two connections from the
output Timer interface, so they may be shared only if that interface
has an @least or @any constraint.

2.5 Exclusive Instantiation with “my”
A service author may want to explicitly prevent components from

being shared, usually because the components represent private state.
Suppose we have a simple component called EWMA that provides in-
terfaces for accepting new samples and for notifying consumers of
a new exponentially-weighted moving average. Although different
EWMA instances might often be sharable (they’d have the same alpha
weight parameter, and EWMA’s interfaces are naturally at-least-once),
EWMA’s state contains the current average—a service-specific value—
so sharing a EWMA component between unrelated services doesn’t
make sense.

We therefore introduce a type qualifer keyword “my” for explicitly
marking unshareable components. A component instance c marked
“my” cannot be shared with any other instance d in the configuration,
unless c and d were both expanded from the same instance inside
some service type, and the services from which c and d were ex-
panded are completely shared. For example:

service SmoothedSensor1 {
Sensor1[Put16] -> my EWMA(alpha = 0.4) -> out;

}
service SmoothedSensor2 {

Sensor2[Put16] -> my EWMA(alpha = 0.4) -> out;
}
ss1 :: SmoothedSensor1; ss2 :: SmoothedSensor2;

ss1 and ss2’s EWMAs are never shared, since ss1 and ss2 cannot be
completely shared (the Sensor1 and Sensor2 have different types).
However, in this code:

ss1, ss2 :: SmoothedSensor1;
ss1 -> d :: Discard; ss2 -> d;

ss1 and ss2 may be combined into a single SmoothedSensor1 in-
stance, so there will be a single EWMA instance in the result. (How-
ever, the EWMAs would not be shared if either ss1 or ss2 were declared
“my”.)

2.6 Service Weaving
The conventional direct arrow connector “->” connects two com-

ponents together over some interface. That is, the function calls made
by the component on one side of the arrow are implemented by def-
initions on the other side of the arrow. Direct arrows position com-
ponents within their local context. A component is connected to its
neighbors, which in turn are connected to their neighbors.

Any deployed application consists of local connections, but local
connections are not, in fact, the right abstraction for constructing a
reusable library of interdependent services. Consider, for example,
two services that want to check sensors at different rates. We might
write the services this way, using a common TimeSrc component to
modularize out the timer interrupt:

service TimedSensor1 {
TimeSrc(period <= 10) [signal] -> Sensor1 -> TimeSink;

}
service TimedSensor2 {

TimeSrc(period <= 20) [signal] -> Sensor2 -> TimeSink;
}

These services have a similar structure due to their similar func-
tionality. But can they be efficiently combined? The optimal com-
bination might piggyback both kinds of sensing off a single timer,
sharing that control flow path and its attendant interrupt costs:
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TimeSrc(period = 10) [signal] -> Sensor1 -> Sensor2 -> TimeSink;

This combination, of course, cannot be obtained from any local con-
nection of the two services. Either the services must be written with
knowledge of each other, violating modularity, or we need a new,
non-local connector.

SNACK therefore introduces the transitive arrow connector “..>”,
which connects components non-locally. A transitive connection “a
[i] ..> b” says interface a[i] is connected to interface [i]b via
some path of i interfaces. Since the two Sense components don’t
care in which order they appear, our two services could be written
using ..> as follows:

service TimedSensor1 {
TimeSrc(period <= 10) [signal] ..> Sensor1 ..> TimeSink;

}
service TimedSensor2 {

TimeSrc(period <= 20) [signal] ..> Sensor2 ..> TimeSink;
}

When these services are used together in the same application, the
SNACK compiler analyzes the transitive arrows and produces a min-
imal combination that meets all required constraints: namely, the
minimal configuration above, or the similar one that switches Sen-
sor1 and Sensor2.

The transitive arrow facility makes it possible to build services
that can combine themselves into minimal, excellently performing
combinations. We call this service weaving. The transitive arrow,
and service weaving, naturally gives rise to independently interest-
ing sensor program design patterns: program methodologies that can
improve the behavior of sensor applications. We discuss these in the
next section.

3 COMPONENT AND SERVICE LIBRARY
The SNACK library of components and services contains com-

ponents that sense, aggregate, transmit, route, and process data. It
provides application programmers with both the high-level and low-
level building blocks required for efficient and flexible applications.
Many of these components fundamentally differ from the correspond-
ing components in nesC, since SNACK’s are designed to leverage
language features like service weaving, and therefore to facilitate
smart libraries. This section thus examines the components and ser-
vices in the SNACK library, and shows how SNACK’s language fea-
tures are used in practice.

3.1 Messaging
The radio is a large consumer of power in a sensor node and, con-

sequently, applications must be designed to minimize the total num-
ber of bits sent and received. Thus, if two or more components in a
sensor node each need to transmit data, the data should be combined
into a single packet whenever possible—the messages should be ag-
gregated—to reduce per-message overhead (which reaches 14 bytes
per message using BMAC and TOS_Msg at 100% duty cycle).2 Mes-
sage aggregation is unnatural in TinyOS and nesC because compo-
nents and services generally create and send their messages directly
to the radio stack (and because the TinyOS message format discour-
ages aggregation). SNACK, in contrast, extracts message creation
into a separate component, which can then be shared. Services dec-
orate passing messages with application information in a tag-length-
value format; multiple services can decorate the same message. Fi-
nally, service messaging paths use transitive arrow connectors, al-
lowing the compiler to weave independently-written services into a
single, cooperative, and efficient application messaging path.

2A proposed low-power listening scheme [14] increases packet
preambles to many times the default payload length, making mes-
sage aggregation even more important.

The LinkEstimator service provides a good example. This service
monitors ingress link quality and periodically advertises what it has
learned.

service LinkEstimator (period: max uint32_t $p = 5000) {
lqe :: my LinkEstimatorM(..., period = $p);
lqe [AttrAccess] -> AttrM; // ...
Network [inbound] ..> lqe ..> MsgSink;
MsgSrc (period <= $p) [outbound] ..> lqe ..> Network;

}

The LinkEstimatorM component3 processes both inbound messages,
to monitor quality, and outbound messages, to decorate them with
link quality advertisements. The inbound path starts at Network and
ends at MsgSink; the outbound path starts at MsgSrc and ends at Net-
work. The messaging architecture uses five core components:

Network receives messages from, and sends messages to, the Tiny-
OS radio stack. SNACK messages sent to Network’s outbound inter-
face are compacted into TOS_Msg packets and transmitted. On the re-
ceiving side, NetworkM expands TOS_Msgs into SNACK messages and
pass them along an inbound call chain. Components on this chain
are designed to extract and process relevant information from an in-
coming message, then forward it on for more processing.

MsgSink ends inbound call chains; its only role is to destroy buffers
it receives.

MsgSrc periodically generates empty SNACK messages and passes
them on via an outbound interface. It also provides interfaces to re-
quest a single message and to increase its production rate. It should
be used by any service that periodically generates and transmits data,
since message paths that use MsgSrc and transitive arrows can often
be combined.

AttrM provides a library of functions to add, read, iterate over, and
delete attributes, so that components that use it do not need to ma-
nipulate SNACK messages directly. In practice all components that
access the contents of SNACK messages do so via AttrM’s AttrAc-
cess interface.

MemoryPool dynamically allocates buffers from a managed pool,
and is used by the MsgSrc, Network, and MsgSink services. It allocates
blocks in 4 byte chunks, uses first-fit selection, and has a statically-
configurable size up to 1020 bytes. Dynamic message memory avoids
the high static memory overhead of conservative static allocation,
and avoids buffer swapping errors. Mote programmers have been
hesitant to use dynamic memory because it is assumed to be difficult
to debug leaks, which can be fatal to a deployed application. SNACK
components employ a simple rule to diminish the probability of cre-
ating a leak: a component that allocates memory or receives a pointer
to allocated memory must either deallocate that memory or pass the
pointer to another component. Furthermore, we restrict pool alloca-
tion to very few types of data, namely attributes and application-level
messages, and require all components that pass these types of data
to use the pool.

We designed our message path this way to enhance sharing among
application services. Since packet creation, access, and transmis-
sion are placed in separate components, services can share mes-
saging control flow; and when, as intended, those components are
connected by transitive arrows, the compiler can automatically com-
bine independently-specified paths into efficient combinations. This
contrasts with traditional component composition languages, whose
encapsulation semantics would prevent this combination unless the
services were explicitly connected.

3.2 Timing
This pattern—a source, an open-ended set of forwarders, and a

sink, all connected by transitive arrows—turns out to be useful for
3Base components often have an “M” suffix, to avoid confusion with
services of the same name.
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timer events as well as message generation. In particular, writing
timer events in this style can reduce the number of independent timer
paths in the system, which in turn reduces phase effects (meaning re-
lated timers with slightly different periods) and the number of pend-
ing tasks.

The SNACK timing system has two core components, analogous
to MsgSrc and MsgSink: TimeSrc generates a timestamp signal, emit-
ted over its signal interface at a specified minimum rate, and Time-
Sink consumes that signal. Application components provide both in-
put and output signal interfaces. When the input signal interface
triggers, the application component performs its task, then forwards
the trigger downstream using the output signal interface.

Inside services, then, the usual timing paths look like those in
TimedSensor1 and TimedSensor2 (Section 2.6, above): TimeSrc [sig-
nal] ..> c ..> TimeSink, where c is an application component. Ser-
vices supply TimeSrc’s period parameter with a range, rather than
a specific value, to facilitate sharing; application components must
be written to correctly handle any period in that range (perhaps by
ignoring excess signals). When transitive connections are used, the
result is the same as in the messaging case: independently-written
services combine into shared timer paths—another type of shared
control flow.

3.3 Storage
Separate components implement data storage in SNACK. Node-

Store64M, for example, implements an associative array of eight-byte
values keyed by node ID; other components implement arrays of
2-byte or arbitrarily-sized values. Access functions can find, add,
delete, modify, and iterate over values. This generic data structure
is used in many contexts, including path and link estimation. Since
it implements private state, NodeStore64M should not generally be
shared between services; it is therefore generally marked with “my”.

Without instances, such a storage component would have to be
written as a monolithic component that resorts to intricate arrays of
private state and manual port mapping for access to that state. Such
a monolith’s implementation would be more complicated than our
NodeStore64M, not least because it would have cope with the issues
involved in partitioning its storage space into appropriately sized
chunks for its clients.

3.4 Services
The SNACK service library contains a variety of services—com-

binations of primitive components—ranging in size, configuration
complexity, and substructure depth.

The simplest services just wrap single components, connecting
“infrastructure” interfaces (such as StdControl) to the required com-
ponent (Main in this case). This makes the components easier to use
and configurations easier to read. At the other end of the spectrum
is RoutingTree, which incorporates subservices within subservices.
RoutingTree implements a tree designed to send data up to some
root. Concretely, it wires a TreeDispatch16 to a TreeBuilder and ex-
ports TreeDispatch16’s transport interfaces:

dispatch :: my TreeDispatch16;
in [collect] -> dispatch -> out;
dispatch [lookup] -> TreeBuilder(period = $p); // ...

The TreeDispatch16 uses a TreeBuilder service to provide the ID of
the best next hop towards the root of the tree. TreeBuilder, in turn,
computes and maintains a list of the path qualities to a tree root via
each of a node’s communication neighbors. It uses a LinkEstimator
to get the first hop probability, accessing it through the lqeAccess
interface. Moreover, since the TreeBuilder periodically advertises
soft state about its best known path to the root, it contains inbound
and outbound messaging paths:

tree :: TreeBuilderM(period = $p);
lqe :: LinkEstimator(...);

src :: MsgSrc(period <= $p) [outbound] ..> tree ..> Network;
Network [inbound] ..> tree ..> MsgSink;

tree [access] -> my NodeStore64;
tree [lqeAccess] -> lqe; // ...

The compiler will, of course, combine these messaging paths with
those of LinkEstimator, among others. Only those components that
should not be shared (such as TreeBuilder’s NodeStore64) are de-
clared “my”, so that the compiler can reduce code bloat by maximiz-
ing sharing.

Figure 2 shows how this comes together into a real application.
The figure presents the complete definition of SNACK Forwarder, or
SF, a simple multihop data collector that samples light and temper-
ature every 10 seconds and forwards the results along a distribution
tree. We evaluate SF’s resource allocation and bytes transmitted in
Section 5.

3.5 Discussion
Despite the benefits of a component composition language like

SNACK, writing components still requires expertise in interrupt-
driven nesC programming, and hence the learning curve is still steep.
A component developer must learn a component development lan-
guage; she must understand concurrency and how to use tasks, guards,
and atomic sections to safely trap interrupts and synchronize asyn-
chronously executing sections of code; and she must be experienced
with implementing distributed protocols that work even when data
is lost. On top of all of this, she must learn a configuration lan-
guage to compose components, and must learn the capabilities of
the available components and services. Our work on SNACK does
not address many of these problems. On the other hand, this learning
curve is precisely the reason we believe a service composition lan-
guage and library can ease application development. Since it is so
difficult to develop functional and efficient components, we employ
every effort in SNACK to make such components reuable and easy
to configure when reused.

SNACK aims to enable the construction of services easy enough
for scientists to use, but we do not believe that all high-level sen-
sor network programming will take place exclusively in the SNACK
language: higher-level mechanisms, either graphical or script-based,
are natural and probably inevitable. However, our experience with
earlier component languages indicates that SNACK is more suitable
than straight nesC as a target language for such higher-level mech-
anisms: it facilitates a natural division of labor where higher-level
mechanisms choose services, and SNACK figures out how to effi-
ciently combine them.

4 COMPILER
The SNACK compiler’s job is to parse a SNACK-language input

file, such as this one:

service SA(period: max uint32_t $p) {
c :: CA(period = $p) [send] -> out;

}
s :: SA(period = 20) [send] -> net :: Network;

and expand all services to produce a simple list of components and
connections, such as this:

s.c :: CA(period = 20);
net :: Network;
s.c [send] -> net;

A back end then translates this list into a nesC application, by rewrit-
ing nesC component source code (to define parameter values, such
as CA’s period, and create multiple instances when necessary) and
generating a configuration.
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service Sense(period: uint16_t $p = 5000){
sense:: my SenseM(period = $p);

Main [StdControl] -> sense -> out;
sense [ADC] -> out;
sense [NodePut16] -> out;

sense [Timer @once] -> Timer;
TimeSrc(period <= $p) [signal] ..> sense ..> TimeSinkM;

};

service SenseLight (period: max uint32_t $p = 1000) {
sense :: my Sense(period = $p);
sensor :: Photo;
sense [NodePut16] -> out;
sense [StdControl] -> sensor;
sense [ADC] -> sensor;

};

service SenseTemp (period: max uint32_t $p = 1000) {
sense :: my Sense(period = $p);
sensor :: Temp;
sense [NodePut16] -> out;
sense [StdControl] -> sensor;
sense [ADC] -> sensor;

};

service Network (sendQ: min uint8_t $q = 4,
recvQ: min uint8_t $r = 3){

net :: NetworkM(sendQ = $q, recvQ = $r);
am :: GenericCommPromiscuous;
qs :: QueuedSend;

in [outbound:MsgRcv] -> net;
net [inbound] -> out;

Main [StdControl] -> net -> am;
net [StdControl] -> qs;
net [toAM:SendMsg] -> qs;
net [fromAM:ReceiveMsg] -> am;
net [Memory] -> MemoryPool;
net [AttrAccess] -> AttrM;

};

service LinkEstimator (alpha: min uint8_t $a = 32,
period: max uint32_t $p = 5000,
thresh: min uint8_t $q = 200) {

lqe :: my LinkEstimatorM(alpha = $a, period = $p, thresh = $q);
ns :: my NodeStore64;

Main [StdControl] -> lqe;
in [decreasePeriod] -> lqe;
in [Access64] -> lqe -> ns;
in [Toggle32] -> [decreasePeriod] lqe;

MsgSrc(period <= $p) [outbound] ..> lqe ..> Network;
Network [inbound] ..> lqe ..> MsgSink;
lqe [AttrAccess] -> AttrM;
lqe [Access64] -> ns;

};

service TreeBuilder (period: max uint32_t $p = 5000) {
tree :: TreeBuilderM(period = $p);
lqe :: LinkEstimator(alpha = 64, period <= $p, thresh >= 96);

Main [StdControl] -> tree;
in [lookup:Get16] -> tree;

src :: MsgSrc(period <= $p) [outbound] ..> tree ..> Network;
Network [inbound] ..> tree ..> MsgSink;

tree [Put32] -> src;
tree [AttrAccess] -> AttrM;
tree [access] -> my NodeStore64;
tree [lqeAccess] -> lqe;

};

service TreeDispatch16(qsize: min uint8_t $q = 8){
td :: my TreeDispatch16M(qsize = $q);
src :: MsgSrc(period > 0);

Main [StdControl] ->td;
in [collect] -> td;
in [broadcast] -> td;
td [collect] -> out;
td [subtreeReady] -> out;
td [fromChild] -> out;
in [toRoot] -> td;
td [broadcast] -> out;
td [lookup] -> out;

td [newMessage] -> src;
td [AttrAccess] -> AttrM;

src [outbound] ..> td ..> Network;
Network [inbound] ..> td ..> MsgSink;

};

service RoutingTree (period: max uint32_t $p = 5000) {
dispatch :: my TreeDispatch16;
nf :: my NullForwarder16;

in [collect] -> dispatch -> [collect] out;
dispatch [fromChild] -> nf;
nf [toRoot] -> dispatch;
dispatch [subtreeReady] -> nf;
dispatch [lookup] -> TreeBuilder(period = $p);

};

tree1, tree2 :: my RoutingTree(period < 20000);
SenseLight(period < 10000) -> [collect] tree1;
SenseTemp(period < 10000) -> [collect] tree2;

Figure 2—The service configuration for SNACK Forwarder, or SF, a SNACK application that forwards temperature and light data up a
multi-hop routing tree. Figure 1 presents a diagrammatic overview; Section 5 evaluates its performance.

Much of the compiler’s work is more or less conventional: pars-
ing the input language, checking static semantics, and expanding
services into their components (which resembles macro expansion).
But one aspect of its work is both unconventional and difficult—
namely, introducing sharing. Most of this section describes the ex-
haustive search algorithm by which this is done.

4.1 Static semantics checking
The SNACK compiler checks for obvious errors—for example,

unknown component types, multiple declarations of the same name,
missing parameters, connections that join interfaces with different

types, and so forth. It also checks for less obvious errors, including:

• A service interface named x may be used in a transitive connec-
tion only if, inside the service definition, all interfaces to which
the service interface is connected are also named x. This ensures
that transitive connections in the expanded component graph will
connect interfaces with the same name.

• Interface constraints must be satisfied. That is, every @least inter-
face is connected at least once, every @most interface is connected
at most once, and every @once interface is connected exactly once.
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However, an @most or @once interface may be associated with mul-
tiple transitive connections; the compiler will resolve those tran-
sitive connections later.

• The interface constraint on a service interface must equal the in-
tersection of the internal interface constraints to which that service
interface is connected. For example, consider this service:

service A {
in [x @once] -> [x @any] C;
in [y @once] -> [y @most] D;
in [y] -> [y @least] E;

}

The @once constraint on A’s x input interface is illegal, since it is
more restrictive than the @any constraint to which x is connected.
But the @once constraint on y is correct, since that is the intersec-
tion of [y]D’s @most constraint and [y]E’s @least constraint. If the
user supplies no constraint, SNACK derives the correct constraint
automatically.

• Parameter constraints must be solvable. For example, C(period =
10, period > 20) is illegal.

These constraints are easy to check, so the compiler can quickly
report errors for many invalid configurations, without going through
the expensive exhaustive search described in the next section. Some
of the checks, such as the restriction on transitive connections’ inter-
face names, also simplify the exhaustive search itself. Each check is
applied to every service, as well as to the top-level configuration.

4.2 Introducing sharing
Each SNACK program has a trivial expansion in which all ser-

vice components have been replaced by the corresponding configu-
rations, leaving only primitive components. For example, this pro-
gram:

service S {
a :: A [send @once] -> out;

}
s1 :: S [send] -> Network;
s2 :: S [send] -> Network;

has the following trivial expansion (note that the anonymous Network
components have been given names):

s1.a, s2.a :: A; Network@2, Network@4 :: Network;
s1.a [send] -> Network@2;
s2.a [send] -> Network@4;

Instances are never shared in a trivial expansion. In contrast, a
maximally-shared expansion shares instances whenever possible. A
maximally-shared expansion is an expansion of the input program,
in that every input component corresponds to exactly one expan-
sion component, every input connection corresponds to an expan-
sion connection, and there are no components or connections not
justified by the input program; but additionally, a maximally-shared
expansion has the minimum number of instances of any valid ex-
pansion. In the program above, s1 and s2 can be shared, as can the
two Networks, leading to a maximally-shared expansion with half the
components of the trivial expansion:

s1.a :: A; /* also stands for s2.a */
Network@2 :: Network; /* also stands for Network@4 */
s1.a [send] -> Network@2;

The contrast only grows in real applications. Figure 2’s trivial expan-
sion has 62 Mains and 166 components in all, while its maximally-
shared expansion has just 23 components.

The compiler’s goal, then, is to produce a maximally-shared ex-
pansion for its input program. This is important because reducing the
number of instances decreases program size, reduces the amount of

statically allocated RAM, and maximizes shared infrastructure, ef-
fectively reducing timer interrupts, sensor hardware interrupts, and
the aggregate number of packets that must be delivered over the ra-
dio and serial interfaces.

The compiler’s strategy is, simply, exhaustive search. It traverses
a list of all possible expansions, sorted in increasing order by number
of instances, and returns the first valid expansion it finds. Clearly this
will be a maximally-shared expansion.

An expansion is valid if it passes four tests:

• Interface constraints. No @most or @once interface may be di-
rectly connected more than once. (Constraints involving transitive
connections are checked separately.) There is no need to check
whether @least constraints are satisfied, or whether @once inter-
faces are connected, since those constraints were verified during
static semantics checking and are satisfied by every expansion.

• Parameters. The linear system of all component and service pa-
rameters has a solution.

• “my” constraints. “my” constraints are satisfied, meaning that a
“my” component c may be shared with another component d only
if c and d are my-shareable. This, in turn, means that c and d have
the same parent service type, they were expanded from the same
instance within that parent service type, the parent services are
completely shared, and either the parent services were not marked
“my” or the parent services are recursively my-shareable.

• Transitive connections. A valid assignment of transitive connec-
tions exists. To find this assignment, the compiler groups the tran-
sitive connections by interface name and type; different groups
may be assigned independently. Then for each group, it tries all n!
connection permutations, stopping at the first valid one. To check
a permutation, the compiler tries sequentially to change each tran-
sitive connection into a valid direct connection.

For example, consider the following configuration, based on the
example in Section 2.6:

ts [signal] ..> s1 ..> te; ts [signal] ..> s2 ..> te;
All signal interfaces have @once constraints. Then the relevant
group contains all four connections. Some permutations will fail,
such as ts..>s1, s1..>te, ts..>s2, s2..>te: the first two steps cre-
ate the configuration fragment ts->s1->te, to which no further
connections can be added because of @once constraints. However,
the order ts..>s1, ts..>s2, s1..>te, s2..>te will work, producing
the configuration ts->s1->s2->te.

The exhaustive search space is huge. Consider a program with k
distinct component types T1, . . . , Tk, where component type Ti has ni

distinct instances in the program’s trivial expansion. An expansion,
with respect to a given type Ti, consists of a partitioning of the ni

instances into nonempty subsets. In the best case, all of Ti’s instances
are shared, and the ni instances are all in one set; in the worst case
(the trivial expansion), none of Ti’s instances can be shared, and the
ni instances are in ni distinct singleton sets. The number of ways ni

elements can be partitioned into nonempty subsets is called a Bell
number, and denoted Bni [18]. Bell numbers grow quite quickly:

Bm =
1
e

∞X

i=0

im

i!
,

and B20 ≈ 5.2 × 1013. The entire exhaustive search space for our
program contains N =

Qk
i=1 Bni expansions. For the configuration

of Figure 2, N is approximately 4 × 10113 (!).
To reduce this search space to a manageable size, the compiler

eliminates obviously incorrect expansions from consideration. In par-
ticular:
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• The compiler maintains, for each component type, a list of pairs
of instances that can never be shared. Two components c and d
can never be shared if:

– There is no joint solution to the parameter constraints of c
and d (for instance, c.period = 20 and d.period > 30);

– There is some interface i where at least one of c[i] and d[i]
has an @most or @once constraint, and c[i] and d[i] are directly
connected to components with different types (for instance,
c[i] -> A and d[i] -> B: the compiler will never combine
A and B into a single instance, so there would always be at
least two direct connections leading from any combination
of c and d, violating the interface constraint);

– Either c or d is declared “my”, and c and d are not my-shareable.

Expansions that violate these “problem pairs” are eliminated at
the component type level, without checking other component types’
expansions. Thus, a single “problem pair” on component type Tj

reduces the search space by a factor of
Q

i�=j Bni .

• The compiler additionally memoizes, for each component type,
the smallest expansion subset that contains no “problem pairs”,
avoiding repetitive work.

• When an expansion is invalid because of some problem, the com-
piler advances in one step to the next expansion that might affect
the problem, rather than wasting time on expansions that would
definitely have the same problem. It does this by making sure to
change at least one component type involved in the problem. In
particular:

– If a component interface c[i] was connected too many times,
then the relevant types consist of c and the components con-
nected to c[i].

– If a set of transitive connections could not be assigned, then
the relevant types are those with an input and/or output in-
terface of the relevant name and type.

– If a “my” constraint was violated, then the relevant types con-
sist of the type of the base component that violated the con-
straint, and the types of those components contained in the
enclosing services that have different expansions.

For future work, we will tighten these constraints further, and add
a similar constraint for parameter problems.

The combination of these heuristics is quite effective for our ap-
plications. For example, the compiler finds the maximally-shared ex-
pansion of Figure 2 in less than a half-second on a recent Intel-based
laptop, after testing just 28 partial expansions. Without heuristics, an
exhaustive search would have tested more than 1036 expansions be-
fore encountering the right one.

4.3 Discussion
The compiler currently works quickly on configurations whose

maximally-shared expansion is small, such as all the configurations
we describe here. However, a configuration whose maximally-shared
expansion is large—where most components cannot be shared—can
cause the compiler to run for a long time. For future work, we will
speed up the compiler in these cases.

Application ROM RAM
SF 18,806 1,867
SF-NoTransitive 24,096 3,077
Surge 14,564 1,921

Figure 3—Application resource allocation in bytes. SF uses 30%
more ROM than Surge, but 3% less RAM; both values for both SF
versions are well within the mica2’s operating constraints.

Description Component ROM RAM
Attribute Access AttrM 2,038 0
Memory MemoryPoolM 2,758 302
Link Quality LinkEstimatorM 1,306 51
Communication NetworkM 958 319
Periodic Messages MsgSrcM 788 48
Tree Construction TreeBuilderM 852 19
Tree Transport TreeDispatch16M 280 36

Figure 4—Resource allocation in bytes for SF’s largest components,
which together account for 44% of SF’s ROM and 42% of its RAM.

5 SAMPLE APPLICATIONS

This section shows how SNACK applications behave in practice.
We compare two versions of a simple SNACK data collector with
Surge, a similar nesC application, in terms of both memory usage
and bytes transmitted in simulation. We also describe a query-and-
collect application that uses SNACK principles to decompose the
query engine, and compare it with the original monolithic query sys-
tem. Our performance hypotheses are that SNACK applications are
not worse than their predecessors—that they use roughly the same
memory space, and transmit no more data—and that services using
SNACK features, especially message aggregation via transitive con-
nections, transmit less data than services not using those features.

5.1 Multihop Data Collection
The SNACK Forwarder application, or SF, produces temperature

and light data every 10 seconds and forwards this data up a multihop
routing tree to a root. Figure 1 shows its high-level structure; Fig-
ure 2 shows its code. Tree construction control messages and link
quality estimator beacons are sent at least once every 20 seconds.
Advertisements of ingress link quality estimates are sent every 160
seconds. Although simple, this application structure has been used
in many real deployments. GDI, for example, takes weather board
sensor data and forwards it up a tree [12].

For a comparison point, we use the Surge application, a proto-
typical implementation of multihop data collection distributed with
TinyOS. Surge as distributed can handle one type of sensor value.
Crossbow has contributed several variations of Surge, including one
that supports multiple sensor types. We use this version of Surge
with two sensor types and the same sampling rates as SF. When we
ran our experiments, Surge used the MintRoute multi-hop routing
service [21], an updated version of the code used in the GDI deploy-
ment. We configure MintRoute to generate the same rate of control
messages as SF.

We also evaluate SF-NoTransitive, a version of SNACK Forwarder
without transitive arrows. SF-NoTransitive’s services cannot be wo-
ven together into combined call chains; we thus expect it to trans-
mit more data, since it cannot aggregate multiple data sources into
single messages. When compiled, SF-NoTransitive has four sources
of empty messages, four network components for transmission, and
two sources of time to activate sampling.

All code was compiled for a typical sensor platform: mica2s run-
ning the standard release of TinyOS 1.1 and a task queue size of 16.
Experiments used the TOSSIM simulator [9].
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Application Pool TOS_Msg
SF 172 308
SF-NoTransitive 188 1,232
Surge N/A 836

Figure 5—Messaging RAM allocation in bytes, including maxi-
mum dynamic memory pool usage (during 49-node simulations) and
static TOS_Msg allocation.

5.2 Resource Allocation
Figure 3 displays the ROM and RAM footprints of all four ap-

plications. The dynamic memory pool used by SF was configured
with a maximum size of 300 bytes; SF’s RAM footprints include
this maximum size. SF-NoTransitive consumes considerably more
resources than SF. This is as expected: the lack of transitive ar-
rows leads to three more MsgSrcM and NetworkM components, and
one more TimeSrcM component, than SF. Per-component ROM and
RAM allocations, partially shown in Figure 5, confirm that these
components account for most of the differences in resource alloca-
tion. SNACK Forwarder’s memory allocations are competitive with
those of Surge. Its RAM usage is slightly less than Surge’s, and al-
though it uses 4,242 more bytes of ROM (around 30%), this is still
nowhere near the mica2’s 128 KB maximum.

Figure 4 breaks down the ROM and RAM allocation for SF’s
largest components. As an approximation, we estimate a compo-
nent’s contribution to ROM by replacing that component with a min-
imum implementation that provides and uses its interfaces. We find
that the code required to provide an application-level message for-
mat is considerable. The attribute access component, which is re-
sponsible for adding attributes to outgoing messages and extract-
ing attributes from incoming ones, consumes 11% of the applica-
tion’s total ROM; the dynamic memory pool, which supports inter-
component message passing and variable application-message siz-
ing, consumes 15%. Fully one-fourth of the allocated ROM is ded-
icated to these services. Since the nesC compiler makes heavy use
of inlining, in more complex applications, the ROM allocation re-
sulting from using these components will likely increase. We are
investigating nesC and gcc compilation techniques to address this.

Figure 5 shows how messaging memory is used in practice. The
“Pool” column shows, for SF, the maximum number of bytes allo-
cated from the dynamic memory pool at any time in our 49-node
simulations. The results are encouraging: even though the dynamic
memory pool was used for all incoming and outgoing application-
level messages and their attributes, the largest allocation was just
188 bytes, at least in simulation. A maximum pool size of 300 bytes
seems clearly sufficient for this application and set of topologies.
The “TOS_Msg” column shows the number of RAM bytes allocated
for TinyOS messages by each application; SF’s NetworkM compo-
nents use a pool of TOS_Msgs to communicate with the TinyOS radio
stack, while Surge uses TOS_Msgs throughout.

5.3 Data Transmission and Aggregation
A large consumer of energy in sensor nodes is the radio. We there-

fore focus on radio operations to approximate the relative energy
consumption of our various applications.

When comparing the performance of applications, we use bytes
transmitted as an indicator of relative energy consumed. Since Tiny-
OS 1.1 uses a CSMA MAC with no early termination, which will
receive a packet in its entirety even if it was intended to be unicast
to another node, there’s no difference between unicast and broad-
cast packets in terms of energy consumption at the receiver. Further-
more, a mote without low-power listening functionality is always
listening and in doing so is consuming as much energy (29 mW on
the CC1000) as when receiving. The energy to transmit (42 mW at
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Figure 6—Bytes sent per node as a function of network size for
600-second simulations at varying network sizes. Each data point
represents the average of three runs; error bars indicate the minimum
and maximum runs.

Application Packet Control Data Total
SF [4] 876.0 300.3 442.5 1618.8
SF [16] 1240.7 362.5 1034.9 2638.0
SF [49] 1282.8 363.0 1126.3 2772.1
SF-NoTransitive [4] 2330.7 505.1 429.6 3265.3
SF-NoTransitive [16] 2930.3 602.7 1209.2 4742.2
SF-NoTransitive [49] 3096.2 630.9 1336.3 5063.4
Surge [4] 1073.3 1345.7 2419.0
Surge [16] 2491.4 3087.1 5578.5
Surge [49] 2892.1 3497.5 6389.6

Figure 7—Average bytes sent per node due to packet overhead, ap-
plication control traffic, and sensor data. We do not distinguish con-
trol and sensor data for Surge. Network sizes are in brackets.

0 dBm) is more than to receive [16], making bytes transmitted a
good indication of energy consumed above and beyond listening or
receiving. Alternatively, we might assume motes could switch to a
low-power state and perfectly synchronize communication. Then, at
least in uniformly random deployments, the number of communica-
tion neighbors is roughly constant across all nodes, making the ag-
gregate energy required to transmit a packet and have all neighbors
receive it a constant multiple of the energy of transmission alone.

Since there’s no difference in energy consumed by unicast and
broadcast packets, our communication services will sometimes place
data intended for a particular node and data intended to be broadcast
in the same packet. However, to save space in our addressing fields,
data destined for two different nodes cannot be aggregated.

The number of bytes sent by SF is determined by the amount of
application control traffic (for link quality beacons and tree build-
ing), which is roughly linear in the number of nodes; the number
of sensor data bytes sent, which depends on the number of nodes
and the average depth of the routing tree; and the number of pack-
ets used to send this information, which depends on how much ag-
gregation the applications perform. Each packet contains 16 bytes
of non-application data: 5 bytes of preamble (assuming BMAC and
100% duty cycle), 2 sync bytes, a 7-byte TOS_Msg header, and a 2-
byte SNACK header.

To evaluate SF, SF-NoTransitive, and Surge, we ran several 600-
second TOSSIM simulations using topologies and connectivity mod-
els derived from measurements of a real mote testbed [2]. Network
sizes varied from 4 to 49 nodes; each experiment was run three
times. Figure 6 shows the number of bytes sent. Figure 7 breaks
down these results into three categories: packet overhead, applica-
tion control traffic, and sensor data.

SF-NoTransitive sends much more data than SF: for a 49-node
network, the difference is roughly 2300 bytes per node. Figure 7
shows that SF and SF-NoTransitive send similar amounts of appli-
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cation control traffic and sensor data, and almost 80% of the dif-
ference between applications is due to packet overhead. This fol-
lows our expectations. The two SFs use the same components, so
they should send roughly the same application traffic. However, SF-
NoTransitive’s four independent message paths, due to its lack of
transitive arrows, cause traffic from different services to be sent in
different packets. We’d therefore expect SF-NoTransitive to send ap-
proximately 3 times more packets than SF. (This is because the two
control traffic paths operate at half the speed of the two data paths.)
The true ratio is about 2.5.

Both SF and SF-NoTransitive transmit more application data per
node as network size increases. This is because the average rout-
ing tree depth increases with network size. Routing tree shape has
a strong effect on the number of bytes sent per node, and seems
quite sensitive to messaging characteristics of the applications under
study; for example, subtracting light sensors from SF—and thereby
reducing the data being generated—also reduces routing tree depth.

Our performance goal was for SF to perform roughly compara-
bly to Surge, despite the advanced character of SF’s services. SF
achieves this goal, and in fact transmits less data than Surge. Possi-
ble reasons include different routing trees and, more fundamentally,
Surge’s lack of aggregation.

5.4 A SNACK Query Engine
We also implemented a more complex application to verify that

SNACK strategies remain useful in other contexts. In particular, we
refactored a monolithic query engine designed for habitat moni-
toring data collection into a set of SNACK services. The SNACK
query engine has one service per query type supported by the origi-
nal query engine; a PeriodicQuery, for example, samples a specified
sensing modality at a requested rate:

service PeriodicQuery() {
query :: PeriodicQueryM; table :: QueryTable;
datamap :: DataMap; conn :: QueryConnector;

query [QueryTableI] -> table; query [MeasName] -> datamap;
query [LibQueryI] -> LibQueryM;
conn [QueryI] ..> query; conn [DataI] ..> query; // ...

}

Other queries include a one-shot query called SingleQuery, a query
for sensing secondary modalities when a primary modality exceeds
a threshold (PeriodicConditionalQuery), a query for detecting an
event such as a rain bucket tipping (EventQuery), a query for reading
a named set of sensors when an event occurs (EventAggregateQuery),
and a query for deleting a running query (DeleteQuery). The struc-
ture of each query service is identical to the PeriodicQuery, except
for the underlying query component itself.

Queries use a QueryTable to store running queries, a DataMap to
translate human data requests into sensing channel IDs, and a Query-
Connector to connect to the rest of the application (in our sample
case, a single hop collection application). Like the messaging and
timer paths described above, the interfaces for incoming queries
(QueryI) and incoming data to be resolved by queries (DataI) can
be specified with a transitive connector, allowing the compiler to
construct interface chains if there are multiple query types. When a
query service receives a new query or new data, it checks the type,
processes the request if relevant, and forwards it along the chain. As
in messaging and timrs, query service weaving lets independent ser-
vices cooperate to form an efficient path; here, that path resembles
the functionality of a switch statement embedded, unextensibly, in
the monolithic query engine.

The following table summarizes the memory allocation for these
different query processing implementations.

Query Style ROM RAM
SNACK Queries 30,460 1731
Monolithic Query Engine 30,226 1731

Thus, using the SNACK services results in identical functionality
to the monolithic style, an identical RAM allocation, and only a
slightly worse ROM allocation.

6 RELATED WORK

Other component systems form SNACK’s most closely related
body of work. In particular, SNACK is currently built on top of
nesC [6] and TinyOS [10], the de facto standards for mote pro-
gramming and operating systems. NesC adds a component abstrac-
tion to the C language, primitives for managing interrupt concur-
rency, and extensive inlining for greater efficiency, and is a great
improvement over previous models for constructing sensor applica-
tions. SNACK’s base components are written in nesC, and its com-
piler generates nesC source files and a nesC configuration as out-
put. SNACK replaces TinyOS’s application-level components with
its own library, but makes use of TinyOS’s infrastructure compo-
nents, such as the radio stack and timer interrupt access.

NesC’s component composition model descends from units [4],
a language designed for flexible linking specifications. Units have
been used in other systems, such as Knit [17], a component model
for the Flux OSKit [5]. However, units were originally designed to
link components together, rather than instantiate their state in an
object-oriented sense. This may be one source of nesC’s inability to
multiply instantiate components, which simplifies optimization but
complicates programming.

More object-oriented component composition languages, such as
the network stack systems Click [8], Scout [13], and x-kernel [7],
remove this instantiation restriction. SNACK’s syntax most closely
resembles that of Click, with additions for interface names, types,
and constraints and the transitive arrow operator.

A complementary approach to ours is to provide high-level ac-
cess to particular sensor network application operations. The Hood
neighborhood abstraction for sensor networks [20], for example, uses
a library of perl scripts and nesC code to expand “macrodeclara-
tions” describing neighborhood and data types shared into config-
urations of nesC components. Similarly, abstract regions [19] are a
family of spatial operators designed to let a nesC programmer think
in terms of the spatial relationships of nodes when sharing data.
SNACK and these approaches should be complementary: SNACK
provides general mechanisms for service construction, while Hood
and abstract regions demonstrate ways to construct particularly im-
portant services.

Another complementary approach is the construction of whole ap-
plications that provide high-level interfaces to network users. For
example, TinyDB [11] provides SQL-style query support for net-
works of motes. In this sense, it is a kit for constructing a specific
type of application—one that queries. The benefit to this approach is
simplicity, but its drawback is flexibility: TinyDB, unlike SNACK,
cannot be used to build applications in which the nature of data pro-
duction, filtering, aggregation, and routing can be arbitrarily cho-
sen. We believe that as our library expands to a sufficient number
of query and data collection services, SNACK can be used to easily
and efficiently construct and extend applications like TinyDB.

7 FUTURE WORK

SNACK is ongoing work. Although we have written dozens of
components that comprise the services in our library, more need to
be written. In particular, we will focus on data filters and aggrega-
tors, and mechanism for triggered queries and actuation.
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The compiler currently generates a single binary that is expected
to be run on a set of motes. We will extend our service library and
language so that mote roles can be specified and their interrelation-
ships described. A single SNACK specification thus might be con-
verted by our compiler into multiple binaries, one for each role. Ul-
timately, in addition to creating multiple binaries for a single plat-
form, we would like to investigate to what extent our library can be
extended to cross-platform tiered-architecture applications.

We expect syntax additions. We will be adding syntax for us-
ing and overriding default components and services, and for passing
components or groups of components as parameters to services. We
plan additions to type qualifiers (for instance, “singleton”) to restrict
component usage contexts. In the longer term, we wish to extend
our parameter syntax for static initialization choices to dynamically
control and optimize runtime behavior.

We will also optimize our compiler’s performance by improving
its exhaustive search heuristics.

8 CONCLUSION
We have presented SNACK, a configuration language, component

and service library, and compler that enables application developers
to harness the power of service abstraction without losing control
over efficiency. Through facilities such as controlled sharing and
transitive connections, SNACK enables the construction of smart,
easy-to-use application-level libraries that can automatically weave
themselves into efficient combinations. We constructed a data for-
warding application in SNACK and have shown that its performance
in terms of radio usage and footprint is comparable or better than an
existing application in nesC alone. Although much work still needs
to be done, we have made significant progress towards our goal: pro-
viding a way for application programmers to easily develop efficient
sensor network applications. SNACK will be made freely available
online.
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