

Assignment 2: Query Optimization in Spark SQL
Assigned:​ Monday, April 29th, 2019
Due:​ Monday, May 13th, 2019 @ 12pm (noon)
Starter Code:​ ​https://github.com/stanford-futuredata/cs245-as2-public
Link to class Gradescope:​ ​https://www.gradescope.com/courses/43752

Overview
In this assignment, you will use Spark’s SQL component to analyze query execution plans (Part I) and
write some of your own query optimization rules (Part II). Part I involves running SQL queries in an
interactive Spark shell, then writing up some analyses of the results. Part II involves writing Scala code to
implement custom Spark SQL query optimization rules.

Setup
Software Dependencies

● Spark 2.3.3
○ Download Spark 2.3.3, prebuilt for Hadoop 2.7: ​spark.apache.org/downloads.html​.
○ Running Spark requires Java 8 (unfortunately Java 9+ is not compatible). You’ll need to

download Java 8 if you do not have it already, and make sure ​JAVA_HOME​ points to your
Java 8 JDK root directory (e.g. MacOS users can run the command
/usr/libexec/java_home -v 1.8​ to find the home dir of their Java 8 installation if you
have one).

Background
We strongly suggest you read/review the following resources:

● The three lectures on Query Execution and Query Optimization
● The Spark SQL paper

○ (the assigned reading for week 5)
http://web.stanford.edu/class/cs245/readings/spark-sql.pdf

● Spark SQL programming
○ The Overview and Getting Started sections in

https://spark.apache.org/docs/2.3.3/sql-programming-guide.html
● Intro to Scala, if it’s new to you

○ https://docs.scala-lang.org/tour/tour-of-scala.html
○ https://learnxinyminutes.com/docs/scala/

https://github.com/stanford-futuredata/cs245-as2-public
https://www.gradescope.com/courses/43752
https://spark.apache.org/downloads.html
http://web.stanford.edu/class/cs245/readings/spark-sql.pdf
https://spark.apache.org/docs/2.3.3/sql-programming-guide.html
https://docs.scala-lang.org/tour/tour-of-scala.html
https://learnxinyminutes.com/docs/scala/

Part I: Analyze Query Plans
● All of the material for Part I resides in the ​part1/​ folder in the starter code repository.
● Follow the instructions in ​part1_handout.pdf​.
● When writing your solutions to the problems, you have two options:

○ 1. Use ​LaTeX​, and write your solutions directly into ​part1_handout.tex​ (you should
delete all the ​\vspace{2in}​ lines).

○ 2. Print out ​part1_handout.pdf​ and handwrite your solutions in the spaces we provide.

Part II: Write Your Own Optimization Rules
In this part, you will write a set of transforms to optimize Spark SQL logical plans that contain instances
of a custom function (commonly known as a user-defined function, or UDF) we have defined called
dist​. This function computes the distance between two (x, y) points, and is defined as follows:

double dist(double x1, double y1, double x2, double y2) {

 return sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2);

}

The code for this part is located at the top level of the assignment 2 repository. There are two main files:
Transforms.scala​, to which you will add your transforms, and ​Tester.scala​, which runs several tests
to check the correctness and completeness of your transforms. Feel free to add additional debugging code
to ​Tester.scala​, but you will only be submitting ​Transforms.scala​ on Gradescope and we will use an
unmodified version of ​Tester.scala​ to grade your code.

Before you begin, run ​mvn package​ in the top level of the Assignment 2 repository. This command will
take around 10 minutes the first time you run it, and will download all of the dependencies required for
Spark SQL. You can then import the Assignment 2 repository into IntelliJ IDEA or your preferred IDE.
Remember to import the top-level directory containing pom.xml. An IDE is recommended for this
assignment so you can easily explore Apache Spark’s code.

You must write four transforms for this assignment. The transforms take an a Spark SQL ​LogicalPlan
and produce an optimized ​LogicalPlan​. In the following discussion, assume that we have a Spark SQL
table T with four columns of type double: ​x1​, ​y1​, ​x2​, and ​y2​.

Your first three transforms will simplify expressions involving ​dist​ in any operator. We have provided
an example transform of this type in ​Transforms.scala​. Called ​EliminateZeroDists​, it simplifies
expressions of the form ​dist(x, y, x, y)​ to the constant value 0. The final transform you must
implement is specific to the ​Sort ​operator.

1. Simplify comparison expressions involving a ​dist​ and a constant that always evaluate to either
true or false. For example ​select * from T where dist(x1, y1, x2, y2) > -1​ should
simplify to ​select * from T​ since ​dist​ must always be non-negative.

2. Replace any expression of the form ​dist(...) == 0​ with a simpler (and cheaper) expression
involving just comparisons between the arguments to ​dist​.

3. Replace comparisons between a ​dist​ and another ​dist​ or a constant value by squaring both sides
to eliminate the square root computation. We have provided a helper method called
getDistSqUdf​ to get an instance of the squared version of ​dist​, called ​dist_sq​. As an example
of this transformation, ​select * from T where dist(x1, y1, x2, y2) > 2​ should become
select * from T where dist_sq(x1, y1, x2, y2) > 4​. (Note: due to floating point
inaccuracies, this transform may not always be sound, but please ignore this for the purposes of
the assignment.)

4. If an order expression in a ​Sort​ operator is a ​dist​, replace it with ​dist_sq​ to avoid the square
root computation, since the order of the squared values is the same as the order of the original
values. (Note: when considering a ​SortOrder​ object, you can ignore its ​sameOrderExpressions
field and focus on its ​child​ field.)

You must add all of the transforms you implement to the ​Seq​ returned by the ​getOptimizationPasses
method in ​Transforms.scala​. You may find it useful to add extra transforms beyond the ones we have
asked for to simplify your implementation. One useful transform may be to reorder comparisons
involving ​dist​ so that the ​dist​ is always on the left-hand side (or right-hand side) of the comparison.
Note that the full list of transforms is run repeatedly until none of them make any changes to the logical
plan (“run to fix point”).

We have left in all of the necessary import statements in ​Transforms.scala​ to help guide your
implementation. The IDE is your friend -- click through to the implementations of different Spark SQL
classes (your IDE should allow you to download the Spark SQL sources) to see how they work and what
arguments they expect.

To run the tests and check your score, edit the ​run_tests.sh​ script in the top level of the Assignment 2
repository and set the ​SPARK_233_HOME​ variable to point to the top level of your Spark 2.3.3 installation.
Then run ​./run_tests.sh​. To debug, you can look at the output of the above command to see which
assertion is failing for a failed test, then look at your optimized logical plan (produced by the
explain(true)​ method).

Note that we may make bug fixes to the tests before the assignment is due.

Grading
● Part I is worth a total of 70 points. Each of the 7 problems is worth 10 points. The one bonus

problem (#8) is up to 5 points of extra credit, assigned based on the explanation.
● Part II is worth 140 points. There are 12 tests, with the first 10 worth 10 points each and the last

two worth 20 points each.

Submission Instructions
● Submit a PDF (either generated from LaTeX or a scanned version of your handwritten solutions

on the handout) to the gradescope assignment titled ​Assignment 2: Part I (Written)​ and
please ​tag​ each question. ​We will deduct 5 points​ from any submitted solution that is not tagged
properly.

● Submit your ​Transforms.scala​ to the Gradescope assignment titled ​Assignment 2: Part II
(Code)​.

Note that this assignment is to be done individually. We encourage students to form study groups, but all
code must be written independently.

