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System R Design

Already had essentially the same architecture 
as a modern RDBMS!
» SQL
» Many storage & access methods (B-trees, etc)
» Cost-based optimizer
» Compiling queries to assembly
» Lock manager
» Recovery via log + shadow pages
» View-based access control
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System R Motivation

Navigational DBMS are hard to use

Can relational DBMS really be practical?
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Navigational vs Relational Data
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Why is the relational model more flexible?



Three Phases of Development

Why was System R built in 3 phases?

CS 245 7



Storage in System R Phase 0
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32-bit 
pointers

What was the 
issue with this 

design?

Too many I/Os:
• For each tuple, look 

up all its fields
• Use “inversions” to 

find TIDs with a given 
value for a field

Can also have 
reverse mappings 

(inversions)



Storage in System R Phase 1
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B-tree nodes contain 
values of the column(s) 
indexed on

Data pages can 
contain all fields of the 
record

Give an example 
query that would be 
faster with B-Trees!



API

Mostly the same SQL language as today

Embedded SQL in PL/I and COBOL
» .NET added LINQ in 2007

Interesting additions:
» “EXISTS”
» “LIKE”
» Prepared statements
» Outer joins
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SELECT expression(s)
FROM table
WHERE EXISTS
(SELECT expr FROM table WHERE cond)

WHERE name LIKE ‘Mat%’

stmt = prepare(“SELECT name FROM
table WHERE id=?”)

execute(stmt, 5)



Query Optimizer

How did the System R optimizer change 
after Phase 0?

CS 245 11



Query Compilation

Why did System R compile queries to 
assembly code?

How did it compile them?

Do databases still do that today?
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Recovery

Goal: get the database into a consistent 
state after a failure

“A consistent state is defined as one in 
which the database does not reflect any 
updates made by transactions which did not 
complete successfully.”
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Recovery

Three main types of failures:
» Disk (storage media) failure
» System crash
» Transaction failure
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Handling Storage Failure
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Main disk

DBMS

Tables Change
log

Backup 
disk

(Older)
tables

Change
log

RAM



System Crash Failure
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Main disk

DBMS

Tables Change
log

Backup 
disk

(Older)
tables

Change
log

RAM

Buffered pages,
in-progress
transactions



Handling Crash Failures: 
Shadow Pages
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Table Pages

=

Updated
Pages

RAM

Swap
pointers

Why do we need 
both shadow 
pages and a 
change log?



A Later Note on Recovery
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Jim Gray, “The Recovery Manager of the 
System R Database Manager”, 1981



Transaction Failure

BEGIN TRANSACTION;

SELECT balance FROM accounts
WHERE user_id = 1;

UPDATE accounts WHERE user_id = 1
SET balance = balance – 100;

COMMIT TRANSACTION;

ROLLBACK TRANSACTION;
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Handling Transaction Failures
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Just undo any changes they made, which we 
logged in the change log

Nobody else “saw” these changes due to 
System R’s locking mechanism



Locking

The problem:
» Different transactions are concurrently trying 

to read and update various data records
» Each transaction wants to see a static view 

of the database (maybe lock whole DB)
» For efficiency, we can’t let them do that!
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Fundamental Tradeoff
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Finer-grained 
locking

Coarser-grained 
locking

Lock smaller units of data 
(records or fields), lock for 
specific operations (e.g. R/W)
+ Allows more transactions

to run concurrently
– More runtime overhead

Lock bigger units of data
(e.g. whole table) for broader 
purposes (e.g. all operations)
+ More efficient to implement
– Less concurrency

Even if fine-grained locking were free, in some 
cases where it would give unacceptable perf!



Fundamental Tradeoff
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Lock smaller units of data 
(records or fields), lock for 
specific operations (e.g. R/W)
+ Allows more transactions

to run concurrently
– More runtime overhead

Lock bigger units of data
(e.g. whole table) for broader 
purposes (e.g. all operations)
+ More efficient to implement
– Less concurrency

Finer-grained 
locking

Coarser-grained 
locking

Strong isolation
level

Weak
isolation level

Closer to exclusive view of DB 
(can’t see others’ changes)

See others’ changes,
but more concurrency 



Locking and Isolation in 
System R
Locking:
» Started with “predicate locks” based on expressions: 

too expensive
» Moved to hierarchical locks: record/page/table, with 

read/write types and intentions

Isolation levels:
» Level 1: Transaction may read uncommitted data; 

successive reads to a record may return different values
» Level 2: Transaction may only read committed data, but 

successive reads can differ
» Level 3: Successive reads return same value
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Most apps chose Level 3 since others weren’t much faster



Are There Alternatives to 
Locking for Concurrency?
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Authorization

Goal: give some users access to just parts 
of the database
» A manager can only see and update salaries 

of her employees
» Analysts can see user IDs but not names
» US users can’t see data in Europe
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Authorization

System R used view-based access control
» Define SQL views (queries) for what the user 

can see and grant access on those

Elegant implementation: add the user’s SQL 
query on top of the view’s SQL query
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CREATE VIEW canadian_customers AS
SELECT customer_name, email_address
FROM customers
WHERE country = “Canada”;



User Evaluation

How did the developers evaluate System R?

What was the user feedback?
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Typical RDBMS Architecture

Buffer Manager

Query Parser

User Transaction Transaction Manager

Query Planner

Recovery ManagerConcurrency Control

LogLock Table Mem.Mgr. Buffers

Data StatisticsIndexes

User Data System Data

File Manager

User
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Boundaries
Some of the components have clear 
boundaries and interfaces for modularity
» SQL language
» Query plan representation (relational algebra)
» Pages and buffers

Other components can interact closely
» Recovery + buffers + files + indexes
» Transactions + indexes & other data structures
» Data statistics + query optimizer
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Differentiating by Workload

2 big classes of commercial RDBMS today

Transactional DBMS: focus on concurrent, 
small, low-latency transactions (e.g. MySQL, 
Postgres, Oracle, DB2) → real-time apps

Analytical DBMS: focus on large, parallel 
but mostly read-only analytics (e.g. Teradata, 
Redshift, Vertica) → “data warehouses”
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How To Design Components for 
Transactional vs Analytical DBMS?

Component Transactional 
DBMS

Analytical 
DBMS

Data storage

Locking

Recovery
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How To Design Components for 
Transactional vs Analytical DBMS?

Component Transactional 
DBMS

Analytical 
DBMS

Data storage B-trees, row 
oriented storage

Column-
oriented storage

Locking

Recovery
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How To Design Components for 
Transactional vs Analytical DBMS?

Component Transactional 
DBMS

Analytical 
DBMS

Data storage B-trees, row 
oriented storage

Column-
oriented storage

Locking Fine-grained, 
very optimized

Coarse-grained 
(few writes)

Recovery
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How To Design Components for 
Transactional vs Analytical DBMS?

Component Transactional 
DBMS

Analytical 
DBMS

Data storage B-trees, row 
oriented storage

Column-
oriented storage

Locking Fine-grained, 
very optimized

Coarse-grained 
(few writes)

Recovery Log data writes, 
minimize latency

Log queries
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How Can We Change the 
DBMS Architecture?
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Decouple Query Processing 
from Storage Management
Example: data lake systems (Hadoop, GFS, Athena)

Large-scale
file systems or

blob stores
GFS

Open storage and
metadata formats

Processing
engines

MapReduce
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Decouple Query Processing 
from Storage Management
Pros:
» Can scale compute independently of storage 

(e.g. in datacenter or public cloud)
» Let different orgs develop different engines
» Your data is “open” by default to new tech

Cons:
» Harder to guarantee isolation, reliability, etc
» Harder to co-optimize compute and storage
» Can’t optimize across many compute 

engines
» Harder to manage if too many engines!
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Change the Data Model

Key-value stores: data is just key-value pairs, 
don’t worry about record internals

Message queues: data is only accessed in a 
specific FIFO order; limited operations

ML frameworks: data is tensors, models, etc
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Change the Compute Model

Stream processing: Apps run continuously
and system can manage upgrades, scale-up, 
recovery, etc

Eventual consistency: handle it at app level
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Different Hardware Setting

Distributed databases: need to distribute 
your lock manager, storage manager, etc, or 
find system designs that eliminate them

Public cloud: “serverless” databases that 
can scale compute independently of storage 
(e.g. AWS Aurora, Google BigQuery)

CS 245 44



AWS Aurora Serverless
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