
Database System 
Architecture

Instructor: Matei Zaharia
cs245.stanford.edu

https://cs245.stanford.edu/


Outline

System R discussion

Relational DBMS architecture

Alternative architectures & tradeoffs

2CS 245



Outline

System R discussion

Relational DBMS architecture

Alternative architectures & tradeoffs

3CS 245



System R Design

Already had essentially the same architecture 
as a modern RDBMS!
» SQL
» Many storage & access methods (B-trees, etc)
» Cost-based optimizer
» Compiling queries to assembly
» Lock manager
» Recovery via log + shadow pages
» View-based access control

CS 245 4



System R Motivation

Navigational DBMS are hard to use

Can relational DBMS really be practical?

CS 245 5



Navigational vs Relational Data

CS 245 6
Why is the relational model more flexible?



Three Phases of Development

Why was System R built in 3 phases?

CS 245 7



Storage in System R Phase 0

CS 245 8

32-bit 
pointers

What was the 
issue with this 

design?

Too many I/Os:
• For each tuple, look 

up all its fields
• Use “inversions” to 

find TIDs with a given 
value for a field

Can also have 
reverse mappings 

(inversions)



Storage in System R Phase 1

CS 245 9

B-tree nodes contain 
values of the column(s) 
indexed on

Data pages can 
contain all fields of the 
record

Give an example 
query that would be 
faster with B-Trees!



API

Mostly the same SQL language as today

Embedded SQL in PL/I and COBOL
» .NET added LINQ in 2007

Interesting additions:
» “EXISTS”
» “LIKE”
» Prepared statements
» Outer joins

CS 245

10

SELECT expression(s)
FROM table
WHERE EXISTS
(SELECT expr FROM table WHERE cond)

WHERE name LIKE ‘Mat%’

stmt = prepare(“SELECT name FROM
table WHERE id=?”)

execute(stmt, 5)



Query Optimizer

How did the System R optimizer change 
after Phase 0?

CS 245 11



Query Compilation

Why did System R compile queries to 
assembly code?

How did it compile them?

Do databases still do that today?

CS 245 12



CS 245 13



Recovery

Goal: get the database into a consistent 
state after a failure

“A consistent state is defined as one in 
which the database does not reflect any 
updates made by transactions which did not 
complete successfully.”

CS 245 14



Recovery

Three main types of failures:
» Disk (storage media) failure
» System crash
» Transaction failure

CS 245 15



Handling Storage Failure

CS 245 16

Main disk

DBMS

Tables Change
log

Backup 
disk

(Older)
tables

Change
log

RAM



System Crash Failure

CS 245 17

Main disk

DBMS

Tables Change
log

Backup 
disk

(Older)
tables

Change
log

RAM

Buffered pages,
in-progress
transactions



Handling Crash Failures: 
Shadow Pages

CS 245 18

Table Pages

=

Updated
Pages

RAM

Swap
pointers

Why do we need 
both shadow 
pages and a 
change log?



A Later Note on Recovery

CS 245 19

Jim Gray, “The Recovery Manager of the 
System R Database Manager”, 1981



Transaction Failure

BEGIN TRANSACTION;

SELECT balance FROM accounts
WHERE user_id = 1;

UPDATE accounts WHERE user_id = 1
SET balance = balance – 100;

COMMIT TRANSACTION;

ROLLBACK TRANSACTION;

CS 245 20



Handling Transaction Failures

CS 245 21

Just undo any changes they made, which we 
logged in the change log

Nobody else “saw” these changes due to 
System R’s locking mechanism



Locking

The problem:
» Different transactions are concurrently trying 

to read and update various data records
» Each transaction wants to see a static view 

of the database (maybe lock whole DB)
» For efficiency, we can’t let them do that!

CS 245 22



Fundamental Tradeoff

CS 245 23

Finer-grained 
locking

Coarser-grained 
locking

Lock smaller units of data 
(records or fields), lock for 
specific operations (e.g. R/W)
+ Allows more transactions

to run concurrently
– More runtime overhead

Lock bigger units of data
(e.g. whole table) for broader 
purposes (e.g. all operations)
+ More efficient to implement
– Less concurrency

Even if fine-grained locking were free, in some 
cases where it would give unacceptable perf!



Fundamental Tradeoff

CS 245 24

Lock smaller units of data 
(records or fields), lock for 
specific operations (e.g. R/W)
+ Allows more transactions

to run concurrently
– More runtime overhead

Lock bigger units of data
(e.g. whole table) for broader 
purposes (e.g. all operations)
+ More efficient to implement
– Less concurrency

Finer-grained 
locking

Coarser-grained 
locking

Strong isolation
level

Weak
isolation level

Closer to exclusive view of DB 
(can’t see others’ changes)

See others’ changes,
but more concurrency 



Locking and Isolation in 
System R
Locking:
» Started with “predicate locks” based on expressions: 

too expensive
» Moved to hierarchical locks: record/page/table, with 

read/write types and intentions

Isolation levels:
» Level 1: Transaction may read uncommitted data; 

successive reads to a record may return different values
» Level 2: Transaction may only read committed data, but 

successive reads can differ
» Level 3: Successive reads return same value

CS 245 25
Most apps chose Level 3 since others weren’t much faster



Are There Alternatives to 
Locking for Concurrency?

CS 245 26



Authorization

Goal: give some users access to just parts 
of the database
» A manager can only see and update salaries 

of her employees
» Analysts can see user IDs but not names
» US users can’t see data in Europe

CS 245 27



Authorization

System R used view-based access control
» Define SQL views (queries) for what the user 

can see and grant access on those

Elegant implementation: add the user’s SQL 
query on top of the view’s SQL query

CS 245 28

CREATE VIEW canadian_customers AS
SELECT customer_name, email_address
FROM customers
WHERE country = “Canada”;



User Evaluation

How did the developers evaluate System R?

What was the user feedback?

CS 245 29



Outline

System R discussion

Relational DBMS architecture

Alternative architectures & tradeoffs

30CS 245



Typical RDBMS Architecture

Buffer Manager

Query Parser

User Transaction Transaction Manager

Query Planner

Recovery ManagerConcurrency Control

LogLock Table Mem.Mgr. Buffers

Data StatisticsIndexes

User Data System Data

File Manager

User

CS 245 31



Boundaries
Some of the components have clear 
boundaries and interfaces for modularity
» SQL language
» Query plan representation (relational algebra)
» Pages and buffers

Other components can interact closely
» Recovery + buffers + files + indexes
» Transactions + indexes & other data structures
» Data statistics + query optimizer

CS 245 32



Differentiating by Workload

2 big classes of commercial RDBMS today

Transactional DBMS: focus on concurrent, 
small, low-latency transactions (e.g. MySQL, 
Postgres, Oracle, DB2) → real-time apps

Analytical DBMS: focus on large, parallel 
but mostly read-only analytics (e.g. Teradata, 
Redshift, Vertica) → “data warehouses”

CS 245 33



How To Design Components for 
Transactional vs Analytical DBMS?

Component Transactional 
DBMS

Analytical 
DBMS

Data storage

Locking

Recovery

CS 245 34



How To Design Components for 
Transactional vs Analytical DBMS?

Component Transactional 
DBMS

Analytical 
DBMS

Data storage B-trees, row 
oriented storage

Column-
oriented storage

Locking

Recovery

CS 245 35



How To Design Components for 
Transactional vs Analytical DBMS?

Component Transactional 
DBMS

Analytical 
DBMS

Data storage B-trees, row 
oriented storage

Column-
oriented storage

Locking Fine-grained, 
very optimized

Coarse-grained 
(few writes)

Recovery

CS 245 36



How To Design Components for 
Transactional vs Analytical DBMS?

Component Transactional 
DBMS

Analytical 
DBMS

Data storage B-trees, row 
oriented storage

Column-
oriented storage

Locking Fine-grained, 
very optimized

Coarse-grained 
(few writes)

Recovery Log data writes, 
minimize latency

Log queries

CS 245 37



Outline

System R discussion

Relational DBMS architecture

Alternative architectures & tradeoffs

38CS 245



How Can We Change the 
DBMS Architecture?

CS 245 39



Decouple Query Processing 
from Storage Management
Example: data lake systems (Hadoop, GFS, Athena)

Large-scale
file systems or

blob stores
GFS

Open storage and
metadata formats

Processing
engines

MapReduce

CS 245 40



Decouple Query Processing 
from Storage Management
Pros:
» Can scale compute independently of storage 

(e.g. in datacenter or public cloud)
» Let different orgs develop different engines
» Your data is “open” by default to new tech

Cons:
» Harder to guarantee isolation, reliability, etc
» Harder to co-optimize compute and storage
» Can’t optimize across many compute 

engines
» Harder to manage if too many engines!

CS 245 41



Change the Data Model

Key-value stores: data is just key-value pairs, 
don’t worry about record internals

Message queues: data is only accessed in a 
specific FIFO order; limited operations

ML frameworks: data is tensors, models, etc

CS 245 42



Change the Compute Model

Stream processing: Apps run continuously
and system can manage upgrades, scale-up, 
recovery, etc

Eventual consistency: handle it at app level

CS 245 43



Different Hardware Setting

Distributed databases: need to distribute 
your lock manager, storage manager, etc, or 
find system designs that eliminate them

Public cloud: “serverless” databases that 
can scale compute independently of storage 
(e.g. AWS Aurora, Google BigQuery)

CS 245 44



AWS Aurora Serverless
CS 245 45


