Query Execution 2 and Query Optimization

Instructor: Matei Zaharia
cs245.stanford.edu

Query Execution Overview

Execution Methods: Once We Have a Plan, How to Run it?

Several options that trade between complexity, performance and startup time

Method 1: Interpretation

```
interface Operator {
    Tuple next();
}
class TableScan: Operator
class Select: Operator
class Project: Operator
```


Running Our Query with Interpretation

```
ops = Project(
    expr = Times(Attr("quantity"), Attr("price")),
    parent = Select(
        expr = Equals(Attr("productId"), Literal(75)),
        parent = TableScan("orders")
    )
);
while(true) {
    Tuple t = ops.next();
    if (t != null) {
        out.write(t);
    } else {
        break;
    }
}

\section*{Method 2: Vectorization}

Interpreting query plans one record at a time is simple, but it's too slow
» Lots of virtual function calls and branches for each record (recall Jeff Dean's numbers)

Keep recursive interpretation, but make Operators and Expressions run on batches

\section*{Implementing Vectorization}
class TupleBatch \{
// Efficient storage, e.g.
// schema + column arrays \}
interface Operator \{
TupleBatch next();
\}
class Select: Operator \{
Operator parent;
Expression condition;
class ValueBatch \{
// Efficient storage
\}
interface Expression \{ ValueBatch compute( TupleBatch in);\}
class Times: Expression \{ Expression left, right;
\}

\section*{Typical Implementation}

Values stored in columnar arrays (e.g. int \(]\) ) with a separate bit array to mark nulls

Tuple batches fit in L1 or L2 cache
Operators use SIMD instructions to update both values and null fields without branching

\section*{Pros \& Cons of Vectorization}
+ Faster than record-at-a-time if the query processes many records
+ Relatively simple to implement
- Lots of nulls in batches if query is selective
- Data travels between CPU \& cache a lot

\section*{Method 3: Compilation}

Turn the query into executable code

\section*{Compilation Example}
\(\Pi_{\text {quanity*price }}\left(\sigma_{\text {productld=75 }}\right.\) (orders))

generated class with the right
class MyQuery \{ field types for orders table void run() \{

Iterator<OrdersTuple> in = openTable("orders");
for(OrdersTuple t: in) \{
if (t.productId == 75) \{ out.write(Tuple(t.quantity * t.price));
\}
\}
\}
Can also theoretically generate vectorized code

\section*{Pros \& Cons of Compilation}
+ Potential to get fastest possible execution
+ Leverage existing work in compilers
- Complex to implement
- Compilation takes time
- Generated code may not match hand-written

\section*{What's Used Today?}

Depends on context \& other bottlenecks
Transactional databases (e.g. MySQL): mostly record-at-a-time interpretation

Analytical systems (Vertica, Spark SQL): vectorization, sometimes compilation

ML libs (TensorFlow): mostly vectorization (the records are vectors!), some compilation

\section*{Query Optimization}

\section*{Outline}

What can we optimize?
Rule-based optimization
Data statistics
Cost models
Cost-based plan selection

\section*{Outline}

What can we optimize?
Rule-based optimization
Data statistics
Cost models
Cost-based plan selection

\section*{What Can We Optimize?}

Operator graph: what operators do we run, and in what order?

Operator implementation: for operators with several impls (e.g. join), which one to use?

Access paths: how to read each table?
» Index scan, table scan, C-store projections,

\section*{Typical Challenge}

There is an exponentially large set of possible query plans
\(\begin{gathered}\text { Access paths } \\ \text { for table 1 }\end{gathered} \times \begin{gathered}\text { Access paths } \\ \text { for table 2 }\end{gathered} \times \underset{\text { for join 1 }}{\text { Algorithms }} \times \underset{\text { for join 2 }}{\text { Algorithms }} \times \underset{\ldots}{ }\)

Result: we'll need techniques to prune the search space and complexity involved

\section*{Outline}

What can we optimize?
Rule-based optimization
Data statistics
Cost models
Cost-based plan selection

\section*{What is a Rule?}

Procedure to replace part of the query plan based on a pattern seen in the plan

Example: When I see expr OR TRUE for an expression expr, replace this with TRUE

\section*{Implementing Rules}

\section*{Each rule is typically a function that walks through query plan to search for its pattern}
```

void replaceOrTrue(Plan plan) {
for (node in plan.nodes) {
if (node instanceof Or) {
if (node.right == Literal(true))
plan.replace(node, Literal(true));
break;
}
// Similar code if node.left == Literal(true)
}
}
}

```

\section*{Implementing Rules}

Rules are often grouped into phases
» E.g. simplify Boolean expressions, pushdown selects, choose join algorithms, etc

Each phase runs rules till they no longer apply
```

plan = originalPlan;
while (true) {
for (rule in rules) {
rule.apply(plan);
}
if (plan was not changed by any rule) break;
}

```

\section*{Result}

Simple rules can work together to optimize complex query plans (if designed well):


\section*{Example Extensible Optimizer}

For Thursday, you'll read about Spark SQL's Catalyst optimizer
" Written in Scala using its pattern matching features to simplify writing rules
" >500 contributors worldwide, >1000 types of expressions, and hundreds of rules

We'll modify Spark SQL in assignment 2 ?\% Pull requests 232
(1) Actions
(11) Projects
(1) Security
\(\xrightarrow{\sim}\) Insights
* Defines the default rule batches in the Optimizer.
* Implementations of this class should override this method, and [[nonExcludableRules]] if
* necessary, instead of [[batches]]. The rule batches that eventually run in the Optimizer,
* i.e., returned by [[batches]], will be (defaultBatches - (excludedRules - nonExcludableRules)).
*/
def defaultBatches: Seq[Batch] = \{
val operatorOptimizationRuleSet = Seq(
// Operator push down
PushProjectionThroughUnion,
ReorderJoin,
EliminateOuterJoin,
PushDownPredicates,
PushDownLeftSemiAntiJoin,
PushLeftSemiLeftAntiThroughJoin,
LimitPushDown,
ColumnPruning,
// Operator combine
CollapseRepartition,
CollapseProject,
OptimizeWindowFunctions,
CollapseWindow,
CombineFilters,
EliminateLimits,
CombineUnions,
// Constant folding and strength reduction
OptimizeRepartition,
TransposeWindow,
NullPropagation,
ConstantPropagation,
FoldablePropagation,
OptimizeIn,
ConstantFolding,
EliminateAggregateFilter,
ReorderAssociative0perator,
LikeSimplification,
BooleanSimplification,
SimplifyConditionals,
PushFoldableIntoBranches,
RemoveDispensableExpressions,
SimplifyBinaryComparison,
ReplaceNullWithFalseInPredicate,
SimplifyConditionalsInPredicate,
PruneFilters,
SimplifyCasts,

\section*{Common Rule-Based Optimizations}

Simplifying expressions in select, project, etc
» Boolean algebra, numeric expressions, string expressions, etc
» Many redundancies because queries are optimized for readability or produced by code

Simplifying relational operator graphs
" Select, project, join, etc
These relational optimizations have the most impact

\section*{Common Rule-Based Optimizations}

Selecting access paths and operator _Also very implementations in simple cases
» Index column predicate \(\Rightarrow\) use index
» Small table \(\Rightarrow\) use hash join against it
» Aggregation on field with few values \(\Rightarrow\) use in-memory hash table

Rules also often used to do type checking and analysis (easy to write recursively)

\section*{Common Relational Rules}

Push selects as far down the plan as possible
Recall:
\(\sigma_{p}(R \bowtie S)=\sigma_{p}(R) \bowtie S \quad\) if \(p\) only references \(R\)
\(\sigma_{q}(R \bowtie S)=R \bowtie \sigma_{q}(S) \quad\) if \(q\) only references \(S\)
\[
\sigma_{p \wedge q}(R \bowtie S)=\sigma_{p}(R) \bowtie \sigma_{q}(S) \quad \text { if } p \text { on } R, q \text { on } S
\]

Idea: reduce \# of records early to minimize work in later ops; enable index access paths

\section*{Common Relational Rules}

Push projects as far down as possible
Recall:
\[
\begin{array}{ll}
\Pi_{x}\left(\sigma_{p}(R)\right)=\Pi_{x}\left(\sigma_{p}\left(\Pi_{x \cup z}(R)\right)\right) & z=\text { the fields in } p \\
\Pi_{x \cup y}(R \bowtie S)=\Pi_{x \cup y}\left(\left(\Pi_{x \cup z}(R)\right) \bowtie\left(\Pi_{y \cup z}(S)\right)\right)
\end{array}
\]
\(\mathrm{x}=\) fields in \(\mathrm{R}, \mathrm{y}=\) in \(\mathrm{S}, \mathrm{z}=\) in both

Idea: don't process fields you'll just throw away

\section*{Project Rules Can Backfire!}

Example: \(\quad R\) has fields \(A, B, C, D, E\) \(p: A=3 \wedge B=" c a t "\) x: \(\{E\}\)
\[
\Pi_{x}\left(\sigma_{p}(\mathrm{R})\right) \quad \text { vs } \quad \Pi_{\mathrm{x}}\left(\sigma_{\mathrm{p}}\left(\Pi_{\{\mathrm{A}, \mathrm{~B}, \mathrm{E}\}}(\mathrm{R})\right)\right)
\]

\section*{What if R has Indexes?}


\section*{Bottom Line}

Many valid transformations will not always improve performance

Need more info to make good decisions
» Data statistics: properties about our input or intermediate data to be used in planning
" Cost models: how much time will an operator take given certain input data statistics?

\section*{Outline}

What can we optimize?
Rule-based optimization
Data statistics

\section*{Cost models}

Cost-based plan selection

\section*{What Are Data Statistics?}

Information about the tuples in a relation that can be used to estimate size \& cost
» Example: \# of tuples, average size of tuples, \# distinct values for each attribute, \% of null values for each attribute

Typically maintained by the storage engine as tuples are added \& removed in a relation
» File formats like Parquet can also have them

\section*{Some Statistics We'll Use}

For a relation R ,
\(\mathbf{T}(\mathbf{R})=\) \# of tuples in \(R\)
\(\mathbf{S}(\mathbf{R})=\) average size of R's tuples in bytes
\(\mathbf{B}(\mathbf{R})=\) \# of blocks to hold all of R's tuples
\(\mathbf{V}(\mathbf{R}, \mathbf{A})=\) \# distinct values of attribute A in R

\section*{Example}
\(R:\)\begin{tabular}{|c|c|c|c|}
\hline A & B & C & D \\
\hline cat & 1 & 10 & a \\
\hline cat & 1 & 20 & b \\
\hline dog & 1 & 30 & a \\
\hline dog & 1 & 40 & c \\
\hline bat & 1 & 50 & d \\
\hline
\end{tabular}

A: 20 byte string
B: 4 byte integer
C: 8 byte date
D: 5 byte string

\section*{Example}
R: \begin{tabular}{|c|c|c|c|}
\hline A & B & C & D \\
\hline cat & 1 & 10 & a \\
\hline cat & 1 & 20 & b \\
\hline dog & 1 & 30 & a \\
\hline dog & 1 & 40 & c \\
\hline bat & 1 & 50 & d \\
\hline
\end{tabular}
\[
\begin{array}{ll}
T(R)=5 & S(R)=37 \\
V(R, A)=3 & V(R, C)=5 \\
V(R, B)=1 & V(R, D)=4
\end{array}
\]

\section*{Challenge: Intermediate Tables}

Keeping stats for tables on disk is easy, but what about intermediate tables that appear during a query plan?

\section*{Examples:}
\(\sigma_{p}(R) \leftarrow \begin{aligned} & \text { We already have } T(R), S(R), V(R, a) \text {, etc, } \\ & \text { but how to get these for tuples that pass } p \text { ? }\end{aligned}\)
\(R \bowtie S \leftarrow\) How many and what types of tuple pass the join condition?

Should we do \((R \bowtie S) \bowtie T\) or \(R \bowtie(S \bowtie T)\) or \((R \bowtie T) \bowtie S\) ?

\section*{Stat Estimation Methods}

Algorithms to estimate subplan stats
An ideal algorithm would have:
1) Accurate estimates of stats
2) Low cost
3) Consistent estimates (e.g. different plans for a subtree give same estimated stats)

Can't always get all this!

\section*{Size Estimates for \(\mathbf{W}=\mathbf{R}_{\mathbf{1}} \times \mathbf{R}_{\mathbf{2}}\)}

\section*{\(\mathrm{S}(\mathrm{W})=\)}
\(T(W)=\)

\section*{Size Estimates for \(\mathbf{W}=\mathbf{R}_{\mathbf{1}} \times \mathbf{R}_{\mathbf{2}}\)}
\[
S(W)=S\left(R_{1}\right)+S\left(R_{2}\right)
\]
\[
T(W)=T\left(R_{1}\right) \times T\left(R_{2}\right)
\]

\section*{Size Estimate for \(\mathbf{W}=\sigma_{A=a}(R)\)}

\section*{\(\mathrm{S}(\mathrm{W})=\)}
\(T(W)=\)

\section*{Size Estimate for \(\mathbf{W}=\sigma_{A=a}(R)\)}

\section*{\(S(W)=S(R) \longleftarrow\) Not true if some variable-length fields} are correlated with value of \(A\)
\(T(W)=\)

\section*{Example}
\begin{tabular}{|c|c|c|c|c|c|}
\hline R & A & B & C & D & \(V(R, A)=3\) \\
\hline & cat & 1 & 10 & a & \(V(R, B)=1\) \\
\hline & cat & 1 & 20 & b & \\
\hline & dog & 1 & 30 & a & \\
\hline & dog & 1 & 40 & c & R,D)=4 \\
\hline & bat & 1 & 50 & d & \\
\hline
\end{tabular}
\(\mathrm{W}=\sigma_{\mathrm{Z}=\mathrm{val}}(\mathrm{R}) \quad \mathrm{T}(\mathrm{W})=\)

\section*{Example}

\(\mathrm{W}=\sigma_{\mathrm{Z}=\mathrm{val}}(\mathrm{R}) \quad \mathrm{T}(\mathrm{W})=\)

\section*{Example}
\begin{tabular}{|c|c|c|c|c|c|}
\hline R & A & B & C & D & \(V(R, A)=3\) \\
\hline & cat & 1 & 10 & a & \(V(R, B)=1\) \\
\hline & cat & 1 & 20 & b & \(V(\mathrm{R}, \mathrm{C})=5\) \\
\hline & dog & 1 & 30 & a & \\
\hline & dog & 1 & 40 & c & \\
\hline & bat & 1 & 50 & d & \\
\hline
\end{tabular}
\(W=\sigma_{Z=\text { val }}(R) \quad T(W)=\frac{T(R)}{V(R, Z)}\)

\section*{Assumption:}

Values in select expression \(\mathrm{Z}=\) val are uniformly distributed over all \(V(R, Z)\) values

\section*{Alternate Assumption:}

Values in select expression \(\mathrm{Z}=\mathrm{val}\) are uniformly distributed over a domain with
\(\operatorname{DOM}(R, Z)\) values

\section*{Example}

Alternate assumption
R \begin{tabular}{|c|c|c|c|}
\hline A & B & C & D \\
\hline cat & 1 & 10 & a \\
\hline cat & 1 & 20 & b \\
\hline dog & 1 & 30 & a \\
\hline dog & 1 & 40 & c \\
\hline bat & 1 & 50 & d \\
\hline
\end{tabular}
\(V(R, A)=3, \operatorname{DOM}(R, A)=10\)
\(V(R, B)=1, D O M(R, B)=10\)
\(V(R, C)=5, \operatorname{DOM}(R, C)=10\)
\(V(R, D)=4, \operatorname{DOM}(R, D)=10\)
\(\mathrm{W}=\sigma_{\mathrm{Z}=\mathrm{val}}(\mathrm{R}) \quad \mathrm{T}(\mathrm{W})=\)

\section*{Example}

\section*{Alternate assumption}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{R} & A & B & C & D & \(V(R, A)=3, \operatorname{DOM}(\mathrm{R}, \mathrm{A})=10\) \\
\hline & cat & 1 & 10 & a & \(V(R, B)=1, \operatorname{DOM}(\mathrm{R}, \mathrm{B})=10\) \\
\hline & cat & 1 & 20 & b & \(V(\mathrm{R}, \mathrm{C})=5, \mathrm{DOM}(\mathrm{R}, \mathrm{C})=10\) \\
\hline & dog & 1 & 30 & a & \(V(R, D)=4, \operatorname{DOM}(\mathrm{R}, \mathrm{D})=10\) \\
\hline \multicolumn{6}{|r|}{(dog 1} \\
\hline \multicolumn{6}{|r|}{50 d what is probability this} \\
\hline & ( pal & & & & \\
\hline
\end{tabular}

\section*{Example}

Alternate assumption
\(R \quad\)\begin{tabular}{|c|c|c|c|}
\hline A & B & C & D \\
\hline cat & 1 & 10 & a \\
\hline cat & 1 & 20 & b \\
\hline dog & 1 & 30 & a \\
\hline dog & 1 & 40 & c \\
\hline bat & 1 & 50 & d \\
\hline
\end{tabular}
\(V(R, A)=3, D O M(R, A)=10\)
\(V(R, B)=1, D O M(R, B)=10\)
\(V(R, C)=5, \operatorname{DOM}(R, C)=10\)
\(\mathrm{V}(\mathrm{R}, \mathrm{D})=4, \mathrm{DOM}(\mathrm{R}, \mathrm{D})=10\)
\(\mathrm{W}=\sigma_{\mathrm{Z}=\mathrm{val}}(\mathrm{R})\)
\[
T(W)=\frac{T(R)}{\operatorname{DOM}(R, Z)}
\]

\section*{Selection Cardinality}

SC(R, A) = average \# records that satisfy equality condition on R.A
\(S C(R, A)=\left\{\begin{array}{l}\frac{T(R)}{V(R, A)} \\ \frac{T(R)}{D O M(R, A)}\end{array}\right.\)

\section*{What About \(W=\sigma_{z \geq \text { val }}(R) ?\)}

\section*{\(\mathrm{T}(\mathrm{W})=\) ?}

\section*{What About \(W=\sigma_{z \geq \text { val }}(R)\) ?}
\(\mathrm{T}(\mathrm{W})=\) ?
Solution 1: \(\mathrm{T}(\mathrm{W})=\mathrm{T}(\mathrm{R}) / 2\)

\section*{What About \(W=\sigma_{z \geq \text { val }}(R)\) ?}
\(\mathrm{T}(\mathrm{W})=\) ?
Solution 1: \(\mathrm{T}(\mathrm{W})=\mathrm{T}(\mathrm{R}) / 2\)
Solution 2: \(\mathrm{T}(\mathrm{W})=\mathrm{T}(\mathrm{R}) / 3\)

\section*{Solution 3: Estimate Fraction of Values in Range}

Example: R

\(\operatorname{Min}=1 \quad V(R, Z)=10\) \(\downarrow \quad W=\sigma_{z \geq 15}(R)\)
\(\operatorname{Max}=20\)
\(f=\frac{20-15+1}{20-1+1}=\frac{6}{20}\)
(fraction of range)
\(T(W)=f \times T(R)\)

\title{
Solution 3: Estimate Fraction of Values in Range
}

Equivalently, if we know values in column:
\(f=\) fraction of distinct values \(\geq\) val
\(T(W)=f \times T(R)\)

\title{
What About More Complex Expressions?
}
E.g. estimate selectivity for

SELECT * FROM R
WHERE user_defined_func(a) > 10


\section*{Size Estimate for \(\mathbf{W}=\mathbf{R}_{1} \bowtie \mathbf{R}_{2}\)}

Let \(X=\) attributes of \(R_{1}\)
\(Y=\) attributes of \(R_{2}\)

Case 1: \(\mathrm{X} \cap \mathrm{Y}=\emptyset:\)
Same as \(\mathrm{R}_{1} \times \mathrm{R}_{2}\)

\section*{Case 2: \(\mathbf{W}=\mathbf{R}_{1} \bowtie \mathbf{R}_{2}, \mathbf{X} \cap \mathbf{Y}=\mathbf{A}\)}
\begin{tabular}{l|l|l|l|l|l|l|}
\(\mathrm{R}_{1}\) & A & B & C & \(\mathrm{R}_{2}\) & A & D \\
\cline { 2 - 4 } & & & & & &
\end{tabular}

\section*{Case 2: \(\mathbf{W}=\mathbf{R}_{1} \bowtie R_{\mathbf{2}}, \mathrm{X} \cap \mathrm{Y}=\mathrm{A}\)}


Assumption ("containment of value sets"):
\(V\left(R_{1}, A\right) \leq V\left(R_{2}, A\right) \Rightarrow\) Every \(A\) value in \(R_{1}\) is in \(R_{2}\) \(V\left(R_{2}, A\right) \leq V\left(R_{1}, A\right) \Rightarrow\) Every \(A\) value in \(R_{2}\) is in \(R_{1}\)

\section*{Computing T(W) when \(\mathrm{V}\left(\mathrm{R}_{1}, \mathrm{~A}\right) \leq \mathrm{V}\left(\mathrm{R}_{2}, \mathrm{~A}\right)\)}


1 tuple matches with \(\quad T\left(R_{2}\right)\) tuples...
\(\mathrm{V}\left(\mathrm{R}_{2}, \mathrm{~A}\right)\)
\(\begin{array}{cc}\text { so } \\ \text { cs } 245\end{array} \quad T(W)=\frac{T\left(R_{1}\right) \times T\left(R_{2}\right)}{V\left(R_{2}, A\right)}\)
\[
\begin{aligned}
& V\left(R_{1}, A\right) \leq V\left(R_{2}, A\right) \Rightarrow T(W)=\frac{T\left(R_{1}\right) \times T\left(R_{2}\right)}{V\left(R_{2}, A\right)} \\
& V\left(R_{2}, A\right) \leq V\left(R_{1}, A\right) \Rightarrow T(W)=\frac{T\left(R_{1}\right) \times T\left(R_{2}\right)}{V\left(R_{1}, A\right)}
\end{aligned}
\]

\section*{In General for \(\mathbf{W}=\mathbf{R}_{\mathbf{1}} \bowtie \mathbf{R}_{\mathbf{2}}\)}
\[
T(W)=\frac{T\left(R_{1}\right) \times T\left(R_{2}\right)}{\max \left(V\left(R_{1}, A\right), V\left(R_{2}, A\right)\right)}
\]

Where \(A\) is the common attribute set

\section*{Case 2 with Alternate Assumption}

Values uniformly distributed over domain


This tuple matches \(T\left(R_{2}\right) / \operatorname{DOM}\left(R_{2}, A\right)\), so
\[
T(W)=\frac{T\left(R_{1}\right) T\left(R_{2}\right)}{\operatorname{DOM}\left(R_{2}, A\right)}=\frac{T\left(R_{1}\right) T\left(R_{2}\right)}{\operatorname{DOM}\left(R_{1}, A\right)}
\]

\section*{Tuple Size after Join}

\section*{In all cases:}
\[
S(W)=S\left(R_{1}\right)+S\left(R_{2}\right)-S(A)
\]

\section*{Using Similar Ideas, Can Estimate Sizes of:}
\(\Pi_{A, B}(R)\)
\(\sigma_{A=a \wedge B=b}(R)\)
\(R \bowtie S\) with common attributes \(A, B, C\)
Set union, intersection, difference, ...

\section*{For Complex Expressions, Need Intermediate T, S, V Results}
\[
\text { E.g. } W=\sigma_{A=a}\left(R_{1}\right) \bowtie R_{2}
\]

\section*{Treat as relation U}
\[
T(U)=T\left(R_{1}\right) / V\left(R_{1}, A\right) \quad S(U)=S\left(R_{1}\right)
\]

Also need V(U, *) !!

\section*{To Estimate V}

\section*{E.g., \(U=\sigma_{A=a}\left(R_{1}\right)\)}

Say \(R_{1}\) has attributes \(A, B, C, D\)
\[
\begin{aligned}
& V(U, A)= \\
& V(U, B)= \\
& V(U, C)= \\
& V(U, D)=
\end{aligned}
\]

\section*{Example}

\[
\begin{aligned}
& V\left(R_{1}, A\right)=3 \\
& V\left(R_{1}, B\right)=1 \\
& V\left(R_{1}, C\right)=5 \\
& V\left(R_{1}, D\right)=3 \\
& U=\sigma_{A=a}\left(R_{1}\right)
\end{aligned}
\]

\section*{Example}
\[
\begin{aligned}
& V\left(R_{1}, A\right)=3 \\
& V\left(R_{1}, B\right)=1 \\
& V\left(R_{1}, C\right)=5 \\
& V\left(R_{1}, D\right)=3 \\
& U=\sigma_{A=a}\left(R_{1}\right) \\
& V(U, A)=1 \quad V(U, B)=1 \quad V(U, C)=\frac{T(R 1)}{V(R 1, A)}
\end{aligned}
\]
\(\mathrm{V}(\mathrm{U}, \mathrm{D})=\) somewhere in between..

\section*{Possible Guess in \(U=\sigma_{A \geq a}(R)\)}
\(V(U, A)=V(R, A) / 2\)
\(V(U, B)=V(R, B)\)

\section*{For Joins: \(\mathbf{U}=\mathbf{R}_{\mathbf{1}}(\mathrm{A}, \mathrm{B}) \bowtie \mathbf{R}_{\mathbf{2}}(\mathrm{A}, \mathrm{C})\)}

We'll use the following estimates:
\(\mathrm{V}(\mathrm{U}, \mathrm{A})=\min \left(\mathrm{V}\left(\mathrm{R}_{1}, A\right), \mathrm{V}\left(\mathrm{R}_{2}, A\right)\right)\)
\(\mathrm{V}(\mathrm{U}, \mathrm{B})=\mathrm{V}\left(\mathrm{R}_{1}, \mathrm{~B}\right)\)
\(V(U, C)=V\left(R_{2}, C\right)\)

Called "preservation of value sets"

\section*{Example:}
\[
Z=R_{1}(A, B) \bowtie R_{2}(B, C) \bowtie R_{3}(C, D)
\]
\(\mathrm{R}_{1}\)
\(T\left(R_{1}\right)=1000 \quad V\left(R_{1}, A\right)=50 \quad V\left(R_{1}, B\right)=100\)
\(\mathrm{R}_{2}\)
\(T\left(R_{2}\right)=2000 V\left(R_{2}, B\right)=200 V\left(R_{2}, C\right)=300\)
\(\mathrm{R}_{3}\)
\(T\left(R_{3}\right)=3000 \quad V\left(R_{3}, C\right)=90 \quad V\left(R_{3}, D\right)=500\)

\section*{Partial Result: U = \(\mathbf{R}_{1} \bowtie \mathbf{R}_{\mathbf{2}}\)}
\[
\begin{aligned}
& T(U)=\frac{1000 \times 2000}{200} \\
& V(U, A)=50 \\
& V(U, B)=100 \\
& V(U, C)=300
\end{aligned}
\]

\section*{End Result: Z = U \(\bowtie \mathbf{R}_{3}\)}
\[
\begin{aligned}
\mathrm{T}(\mathrm{Z})=\frac{1000 \times 2000 \times 3000}{200 \times 300} \quad & V(Z, A)=50 \\
& V(Z, B)=100 \\
& V(Z, C)=90 \\
& V(Z, D)=500
\end{aligned}
\]

\section*{Another Statistic: Histograms}

\[
\begin{aligned}
& \sigma_{A \geq a}(R)=? \\
& \sigma_{A=a}(R)=?
\end{aligned}
\]

\section*{Requires some care to set bucket boundaries}

\section*{Outline}

What can we optimize?
Rule-based optimization
Data statistics

\section*{Cost models}

Cost-based plan selection```

