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The Rise of ML and Neural Networks

2Adapted from Jeff Dean, HotChips 2017
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Deep Neural Networks for Machine Translation
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What is a Deep Neural Network?

• Collection of simple trainable mathematical units that work together to 
solve complicated tasks

6

A tensor algebra operator 
(e.g., convolution, matrix mul)

A tensor (i.e., n-dimensional array)
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ML Computation is Increasing Exponentially
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Amount of computation in 
largest ML training doubles 
every 3.4 months

[OpenAI Blog, 2018]
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ML Systems are a Key Ingredient in ML
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Challenges of Building ML Systems
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Massively Parallel
Tensor algebra is parallelizable 

in many dimensions 

Heterogenous Hardware
Different processor kinds and 
complex memory hierarchy 

New ML Operators
Continuously introduced 

into ML systems

ML Systems
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CMU Automated Learning Systems Lab

Mission: Automate the design and optimization of ML systems by leveraging
1. Statistical and mathematical properties of ML algorithms
2. Domain knowledge of modern hardware platforms

10https://catalyst.cs.cmu.edu/
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Automated ML Systems

CMU Automated Learning Systems Lab
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ML Model
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TASO
Jia et al. SOSP’19
Jia et al. MLSys’19a

1

Device 1

Device N

FlexFlow
Jia et al. ICML’18
Jia et al. MLSys’19b
Jia et al. MLSys’20

Parallelization
Optimization
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TVM
Chen et al. OSDI’18
Chen et al. NeurIPS’18

Device 1

Device N

Kernel 
Generation

3

https://catalyst.cs.cmu.edu/



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Current Rule-based Graph Optimizations

12

conv3x3
+ relu
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Input
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Fuse conv + relu

Fuse conv + 
batch normalization

Fuse multi. convs

…

Current Rule-based Graph Optimizations

Rule-based Optimizer

TensorFlow currently 
includes ~200 rules 

(~53,000 LOC)
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Limitations of Rule-based Optimizations

When I turned on XLA (TensorFlow’s graph optimizer), 
the training speed is about 20% slower

With XLA, my program is almost 2x slower than
without XLA

Robustness
Experts’ heuristics do not 

apply to all models/hardware  

14
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Limitations of Rule-based Optimizations

Robustness
Experts’ heuristics do not 

apply to all models/hardware  

Scalability
New operators and graph 

structures require more rules

TensorFlow currently uses ~4K 
LOC to optimize convolution

15
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Limitations of Rule-based Optimizations

Robustness
Experts’ heuristics do not 

apply to all models/hardware  

Scalability
New operators and graph 

structures require more rules

Performance
Miss subtle optimizations for

specific models/hardware

16
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(Decrease performance)

Motivating Example (ResNet)
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The final graph is 30% faster on V100 but 10% slower on K80.
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Input
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Graph Optimizations

ML 
Operators

Graph
Architectures

Hardware 
Backends

Infeasible to manually design graph optimizations 
for all cases 

Is it possible to generate them automatically?



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

TASO: Tensor Algebra SuperOptimizer

Key idea: replace manually-designed graph optimizations with automated 
generation and verification of graph substitutions for tensor algebra

• Less engineering effort: 53,000 LOC for manual graph optimizations in 
TensorFlow → 1,400 LOC in TASO

• Better performance: outperform existing optimizers by up to 3x
• Stronger correctness: formally verify all generated substitutions

19
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Graph Substitution

20

Conv3x3

W1 W2 X

Conv3x3 Add

Conv3x3

W1 W2 X

Y Y

Add

𝒀 𝒏, 𝒄, 𝒉, 𝒘 = (
𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖,𝒘 + 𝒗 ∗𝑾𝟏(𝒄, 𝒅, 𝒖, 𝒗) + (
𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖,𝒘 + 𝒗 ∗𝑾𝟐(𝒄, 𝒅, 𝒖, 𝒗)

⇔𝒀 𝒏, 𝒄, 𝒉, 𝒘 = (
𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖,𝒘 + 𝒗 ∗ 𝑾𝟏 (𝒄, 𝒅, 𝒖, 𝒗) +𝑾𝟐 (𝒄, 𝒅, 𝒖, 𝒗
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TASO Workflow
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Key Challenges

1. How to generate potential substitutions?

2. How to verify their correctness?

Graph fingerprints

Operator specifications + theorem prover

23
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Graph Substitution Generator

Enumerate all possible graphs up to a 
fixed size using available operators

24

Operators supported by 
hardware backend

…

Subst. 
Generator

Subst. 
Verifier

Graph 
Optimizer
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Graph Substitution Generator

25

66M graphs with up to 4 operators

Explicitly considering all pairs does not scale

Subst. 
Generator

Subst. 
Verifier

Graph 
Optimizer

A substitution = a pair of equivalent graphs
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Graph Substitution Generator
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Compute output fingerprints 
with random input tensors

26
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Graph Substitution Generator
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Pairs of graphs with identical 
fingerprint are candidate substitutions
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Subst. 
Generator

Subst. 
Verifier

Graph 
Optimizer

TASO generates 28,744 substitutions 
(pruned to 743)* by enumerating graphs 

with up to 4 operators 

*Pruning details available in Z. Jia et al. SOSP’19
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Graph Substitution Verifier
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… Graph Subst. 
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P2. conv is bilinear
…
Pn. 

Operator 
Specifications

∀𝑥,𝑤!, 𝑤" .
𝐶𝑜𝑛𝑣 𝑥, 𝐶𝑜𝑛𝑐𝑎𝑡 𝑤!, 𝑤" =
𝐶𝑜𝑛𝑐𝑎𝑡 𝐶𝑜𝑛𝑣(𝑥, 𝑤!), 𝐶𝑜𝑛𝑣 𝑥,𝑤"

Subst. 
Generator

Subst. 
Verifier

Graph 
Optimizer



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Verification Workflow

29

∀𝑥, 𝑤', 𝑤( .
𝐶𝑜𝑛𝑣 𝑥, 𝑤'), 𝐶𝑜𝑛𝑣(𝑥, 𝑤(
= 𝑆𝑝𝑙𝑖𝑡 𝐶𝑜𝑛𝑣 𝑥, 𝐶𝑜𝑛𝑐𝑎𝑡 𝑤', 𝑤(

Conv
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P2. …
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TASO generates all 743 substitutions in 5 minutes, and 
verifies them against 43 operator properties in 10 minutes

Supporting a new operator requires a few hours of human 
effort to specify its properties

Operator specifications in TASO ≈ 1,400 LOC
Manual graph optimizations in TensorFlow ≈ 53,000 LOC  

Verification Effort
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Search-Based Graph Optimizer

31

Input 
Comp. Graph

Search-Based 
Graph Optimizer

…
Verified Substitutions

Optimized
Comp. Graph

Subst. 
Generator

Subst. 
Verifier

Graph 
Optimizer

Cost Model1
• Based on individual 

operators’ cost
• Measure the cost of each 

operator on hardware

• Cost-based backtracking 
search

• Optimizing an ML model 
takes less than 10 minutes

1. Exploring Hidden Dimensions in Parallelizing Convolutional Neural Networks. ICML’18.
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End-to-end Inference Performance (Nvidia V100 GPU)
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Competitive on 
standard models

Larger speedups on
emerging models
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TASO

First DNN graph optimizer that automatically generates substitutions
• Less engineering effort
• Better runtime performance
• Stronger correctness guarantee

35

1. TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP’19.
2. Optimizing DNN Computation with Relaxed Graph Substitutions. MLSys’19.
3. Exploring Hidden Dimensions in Parallelizing Convolutional Neural Networks. ICML’18.
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Can we improve TASO?

36

Operator 
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TASO only discovers fully equivalent substs.
Can we use substs that are partially equivalent and correct the 
results afterwards?
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Motivating Example: Partially Equivalent Substs

37
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PET: Partially Equivalent Substs and Auto Corrections

38

Input Tensor Program

Mutation Generator

Mutation Corrector

Subprogram
Subprogram

Su
bp
ro
gr
am

Optimized Tensor Program

One subprogram

Mutant candidates

Program Optimizer
Corrected mutants

Subprogram

M
ut

an
tMutant

Mutant
Mutant

Co
rre

cti
on

 
Ke

rn
el

1

3

4

Se
ct

io
n 

4
Se

ct
io

n 
5

Se
ct

io
n 

6

2

Program partitioning

Conv2D

Conv2D

correction

Fully Equivalent Transformations

Partially Equivalent Transformations

Generate both fully and partially 
equivalent substs

Auto-correct substs to maintain 
end-to-end equivalance

Optimize DNNs using both fully 
and partially equivalent substs

Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections. H. Wang et al.

Up to 2.5x faster 
than TASO
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Can we improve TASO?

40
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TASO uses backtracking search. 
Can we find an optimal solution in 
the search space?
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Equality Saturation for TASO

• Key idea: a new representation that can express all possible computation 
graphs at once

41EQUALITY SATURATION FOR TENSOR GRAPH SUPEROPTIMIZATION. Y. Yang et al.  

The optimal graph is 16%
better.
The search is 48x faster.
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Can we apply TASO to other problem domains?

• Cross-optimizations between ML and DB operations
• Why: ML and DB operations are optimized separately in today’s DB 

systems
• How: automatically generate co-optimizations of linear algebra and 

relational algebra operations

• Optimizing Compilers for Quantum Computing 
• Why: today’s quantum machines support different sets of instructions -> 

impossible to manually design optimizations for all quantum architectures
• How: automatically generate quantum program transformations given a set 

of instructions

• Others?
42
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Device 1

Automated Discovery of ML Optimizations

Device N

ML Model

TASO FlexFlow

Parallelization
1 2

43

Comp. Graph 
Optimization
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Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages
1. Forward propagation: apply model to a batch of input samples and run 

calculation through operators to produce a prediction
2. Backward propagation: run the model in reverse to produce error for 

each trainable weight
3. Weight update: use the loss value to update model weights 

44

Forward propagation

Model inputs Model prediction
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Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages
1. Forward propagation: apply model to a batch of input samples and run 

calculation through operators to produce a prediction
2. Backward propagation: run the model in reverse to produce error for 

each trainable weight
3. Weight update: use the loss value to update model weights 

45

Backward propagation

Model inputs Model prediction
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Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages
1. Forward propagation: apply model to a batch of input samples and run 

calculation through operators to produce a prediction
2. Backward propagation: run the model in reverse to produce error for 

each trainable weight
3. Weight update: use the loss value to update model weights 

46
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Current Strategies to Parallelize ML Training: 
Data and Model Parallelism

ML Model

Training Dataset

Data 
Parallelism

GPU 1

GPU 2

GPU N

…
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GPU 1

Current Strategies to Parallelize ML Training: 
Data and Model Parallelism

48

GPU 2

ML Model

Training Dataset

Model 
Parallelism
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Are there strategies beyond data/model parallelism?
Can we discover fast ones automatically?

49
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FlexFlow: Automated Search for Fast Strategies

52

Define a search space of possible 
parallelization strategies

= Optimized 
Parallelization strategies

+ A cost model and 
a search algorithm
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The SOAP Search Space
• Samples
• Operators
• Attributes
• Parameters
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The SOAP Search Space
• Samples: partitioning training samples (Data Parallelism)
• Operators
• Attributes
• Parameters

Parallelizing a 1D convolution in Sample
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The SOAP Search Space
• Samples: partitioning training samples (Data Parallelism)
• Operators: partitioning ML operators (Model Parallelism)
• Attributes
• Parameters

Parallelizing multiple convolutions in Operator
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The SOAP Search Space
• Samples: partitioning training samples (Data Parallelism)
• Operators: partitioning ML operators (Model Parallelism)
• Attributes: partitioning attributes in a sample (e.g., pixels)
• Parameters

Parallelizing a 1D convolution in Attribute
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The SOAP Search Space
• Samples: partitioning training samples (Data Parallelism)
• Operators: partitioning ML operators (Model Parallelism)
• Attributes: partitioning attributes in a sample (e.g., pixels)
• Parameters: partitioning parameters in an operator
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GPU1

GPU2

GPU3

GPU4

57Parallelizing a 1D convolution in Parameter
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Hybrid Parallelism in SOAP
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Different strategies perform the same computation.

Example parallelization strategies for 1D convolution
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Data parallelism

A parallelization strategy in SOAP (1.2x faster)

Parameter

Sa
m

pl
e

59

GPU 1
GPU 2
GPU 3
GPU 4
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Parameter
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GPU 1
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GPU 3
GPU 4

Data parallelism

A parallelization strategy in SOAP (1.2x faster) 60
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Challenges of Discovering Fast Strategies in SOAP

61

1. SOAP contains billions or more possible strategies

2. Evaluating a strategy on hardware is too slow

MCMC search algorithm

Execution simulator
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FlexFlow Overview

MCMC
Search Alg.

Distributed Runtime
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Simulated 
Performance

Computation Graph Hardware Topology
Network

GPU GPU

CPU

Conv Conv
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MatMul

62

GPU GPU

CPU

Pool

Execution 
Simulator

FlexFlow

(Cost Model)
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FlexFlow: Automatically Discover Fast Parallelization for DNNs
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https://flexflow.ai
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Can we improve FlexFlow?

MCMC
Search Alg.

Distributed Runtime

Best Found Strategy

Candidate 
Strategy

Simulated 
Performance

Computation Graph Network Topology
Network

GPU GPU

CPU

Conv Conv

Concat

MatMul
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GPU GPU

CPU

Pool

Execution 
Simulator

FlexFlow

(Cost Model)

FlexFlow takes network 
topology as an input.

Can we co-optimize network 
topology and parallelization 
strategies?
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71
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Joint Optimization of Parallelization Strategy and Network 
Topology
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Up to 5.7x faster 
than FlexFlow w/

Fat-tree interconnect

Optimizing the Network Topology for Distributed DNN Training. W. Wang et al.
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Automated Machine Learning Systems
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https://catalyst.cs.cmu.edu/


