How PyTorch Optimizes
Deep Learning Computations

Vincent Quenneville-Bélair, PhD. Facebook AI.
Overview

Compute with PyTorch

Model with Neural Networks

Ingest Data

Use Multiple GPUs and Machines
Compute with PyTorch
def pairwise_distance(a, b):
 p = a.shape[0]
 q = b.shape[0]
 squares = torch.zeros((p, q))
 for i in range(p):
 for j in range(q):
 diff = a[i, :] - b[j, :]
 diff_squared = diff ** 2
 squares[i, j] = torch.sum(diff_squared)
 return squares

a = torch.randn(100, 2)
b = torch.randn(200, 2)

%timeit pairwise_distance(a, b)
438 ms ± 16.7 ms per loop
Example: Batched Pairwise Distance

def pairwise_distance(a, b):
 diff = a[:, None, :] - b[None, :, :] # Broadcast
 diff_squared = diff ** 2
 return torch.sum(diff_squared, dim=2)

a = torch.randn(100, 2)
b = torch.randn(200, 2)

%timeit pairwise_distance(a, b)
322 µs ± 5.64 µs per loop
%timeit, print, pdb

torch.utils.bottleneck

Also pytorch.org/docs/stable/jit.html#debugging
Eager mode: PyTorch – Models are simple debuggable python programs for prototyping

Script mode: TorchScript – Models are programs transpiled and ran by lean JIT interpreter in production
a = torch.rand(5)
def func(x):
 for i in range(10):
 x = x * x
 return x

scripted_func = torch.jit.script(func) # also trace

%timeit func(a)
18.5 µs ± 229 ns per loop

%timeit scripted_func(a)
4.41 µs ± 26.5 ns per loop
scripted_func.graph_for(a)

graph(%x.1 : Float(*)):
%x.15 : Float(*) = prim::FusionGroup_0(%x.1)
return (%x.15)
with prim::FusionGroup_0 = graph(%18 : Float(*)):
%x.4 : Float(*) = aten::mul(%18, %18) # <ipython-input-13-1ec87869e140>:3:12
%x.5 : Float(*) = aten::mul(%x.4, %x.4) # <ipython-input-13-1ec87869e140>:3:12
%x.6 : Float(*) = aten::mul(%x.5, %x.5) # <ipython-input-13-1ec87869e140>:3:12
%x.9 : Float(*) = aten::mul(%x.6, %x.6) # <ipython-input-13-1ec87869e140>:3:12
%x.10 : Float(*) = aten::mul(%x.9, %x.9) # <ipython-input-13-1ec87869e140>:3:12
%x.11 : Float(*) = aten::mul(%x.10, %x.10) # <ipython-input-13-1ec87869e140>:3:12
%x.12 : Float(*) = aten::mul(%x.11, %x.11) # <ipython-input-13-1ec87869e140>:3:12
%x.13 : Float(*) = aten::mul(%x.12, %x.12) # <ipython-input-13-1ec87869e140>:3:12
%x.14 : Float(*) = aten::mul(%x.13, %x.13) # <ipython-input-13-1ec87869e140>:3:12
%x.15 : Float(*) = aten::mul(%x.14, %x.14) # <ipython-input-13-1ec87869e140>:3:12
return (%x.15)

scripted_func.save("func.pt")
Performance Improvements

Algebraic rewriting – Constant folding, common subexpression elimination, dead code elimination, loop unrolling, etc.

Out-of-order execution – Re-ordering operations to reduce memory pressure and make efficient use of cache locality

Kernel fusion – Combining several operators into a single kernel to avoid per-op overhead

Target-dependent code generation – Compiling parts of the program for specific hardware. Integration ongoing with codegen frameworks: TVM, Halide, Glow, XLA

Runtime – No python global interpreter lock. Fork and wait parallelism.
Model with Neural Networks
Application to Vision
class Net(torch.nn.Module):

 def __init__(self):
 ...

 def forward(self, x):
 ...

model = Net()
print(model)

Net(
(conv1): Conv2d(1, 6, kernel_size=(3, 3), stride=(1, 1))
(conv2): Conv2d(6, 16, kernel_size=(3, 3), stride=(1, 1))
(fc1): Linear(in_features=576, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)
How do we choose the parameters?
Gradient Descent, $-\frac{df}{dw}$

Cauchy 1847
GD to SGD

Minimize

\[L(w) = \frac{1}{n} \sum_{i} L_i(w) \]

Gradient Descent

\[w \leftarrow w - \alpha \frac{1}{n} \sum_{i} \frac{d}{dw} L_i(w) \]

Stochastic Gradient Descent

\[w \leftarrow w - \alpha \frac{d}{dw} L_i(w) \]

Test of time award in 2018!

Bottou Bousquet 2008
Minimize

\[L(w) = \frac{1}{n} \sum_i L_i(w) \]

Gradient Descent

\[w \leftarrow w - \alpha \frac{1}{n} \sum_i \frac{d}{dw} L_i(w) \]

Stochastic Gradient Descent

\[w \leftarrow w - \alpha \frac{d}{dw} L_i(w) \]

Test of time award in 2018!
How do we compute derivatives?
The derivative of

\[y = f_3(f_2(f_1(w))) \]

is

\[\frac{dy}{dw} = \frac{df_3}{df_2} \frac{df_2}{df_1} \frac{df_1}{dw} \]

by chain rule
We can write

\[h_{i+1} = \tanh(W_h h_i^T + W_x x^T) \]

as

\[wh_t \leftarrow W_h h_i^T \]
\[whx \leftarrow W_x x^T \]
\[h \leftarrow wh_t + whx \]
\[h \leftarrow \tanh h \]
Example

\[W_x \times x \rightarrow \text{Multiply} \]
\[h \rightarrow \text{Multiply} \]
\[\text{whx} \rightarrow \text{Add} \]
\[\text{wht} \rightarrow \text{Add} \]
\[\text{Add} \rightarrow \text{TanH} \]
\[\text{TanH} \rightarrow h \]

\[W_h \times h \]
Backward pass provides derivative
from torch.optim import SGD
from torch.optim.lr_scheduler import ExponentialLR

loader = ...
model = Net()
criterion = torch.nn.CrossEntropyLoss() # LogSoftmax + NLLLoss

optimizer = SGD(model.parameters)
scheduler = ExponentialLR(optimizer)

for epoch in range(10):
 for batch, labels in loader:
 outputs = model(batch)
 loss = criterion(outputs, labels)

 optimizer.zero_grad()
 loss.backward()
 optimizer.step()

 scheduler.step()
Ingest Data
class IterableStyleDataset(torch.utils.data.IterableDataset):
 def __iter__(self):
 # Support for streams
 ...

class MapStyleDataset(torch.utils.data.Dataset):
 def __getitem__(self, key):
 # Map from (non-int) keys
 ...
 def __len__(self):
 # Support sampling
 ...

Preprocessing
from torch.utils.data import DataLoader, RandomSampler

dataloader = DataLoader(
 dataset,
 batch_size=8, # only for map-style
 num_workers=2, # balance speed and convergence
 sampler=RandomSampler, # non-blocking when > 0
 pin_memory=True, # random read may saturate drive
) # page-lock memory for data?

discuss.pytorch.org/t/how-to-prefetch-data-when-processing-with-gpu/548/19
Pinned Memory in DataLoader

Copy from host to GPU is faster from RAM directly. To prevent paging, pin tensor to page-locked RAM.

Once a tensor is pinned, use asynchronous GPU copies with `to(device, non_blocking=True)` to overlap data transfers with computation.

A single Python process can saturate multiple GPUs, even with the global interpreter lock.
Copy from host to GPU is faster from RAM directly. To prevent paging, pin tensor to page-locked RAM.

Once a tensor is pinned, use asynchronous GPU copies with `to(device, non_blocking=True)` to overlap data transfers with computation.

A single Python process can saturate multiple GPUs, even with the global interpreter lock.
Use Multiple GPUs and Machines
Data Parallel – Data distributed across devices
Model Parallel – Model distributed across devices
Single Machine Data Parallel
Single Machine Model Parallel
Distributed Data Parallel
Distributed Data Parallel with Model Parallel
Distributed Model Parallel

also Ben-Num Hoefler 2018
model = Net().to("cuda:0")
model = torch.nn.DataParallel(model) # also torch.multiprocessing

training loop ...
Single Machine Model Parallel
class Net(torch.nn.Module):

 def __init__(self, gpus):
 super(Net).__init__(self)

 self.gpu0 = torch.device(gpus[0])
 self.gpu1 = torch.device(gpus[1])

 self.sub_net1 = torch.nn.Linear(10, 10).to(self.gpu0)
 self.sub_net2 = torch.nn.Linear(10, 5).to(self.gpu1)

 def forward(self, x):
 y = self.sub_net1(x.to(self.gpu0))
 z = self.sub_net2(y.to(self.gpu1)) # blocking
 return z

model = Net("cuda:0", "cuda:1")

training loop ...
Distributed Data Parallel

pytorch.org/tutorials/intermediate/ddp_tutorial.html
def one_machine(machine_rank, world_size, backend):
 torch.distributed.init_process_group(
 backend, rank=machine_rank, world_size=world_size
)

gpus = {
 0: [0, 1],
 1: [2, 3],
}[machine_rank] # or one gpu per process to avoid GIL

model = Net().to(gpus[0]) # default to first gpu on machine
model = torch.nn.parallel.DDP(model, device_ids=gpus)

training loop ...

for machine_rank in range(world_size):
 torch.multiprocessing.spawn(
 one_machine, args=(world_size, backend),
 nprocs=world_size, join=True # blocking
)
Distributed Data Parallel with Model Parallel
def one_machine(machine_rank, world_size, backend):
 torch.distributed.init_process_group(
 backend, rank=machine_rank, world_size=world_size
)

 gpus = {
 0: [0, 1],
 1: [2, 3],
 }[machine_rank]

 model = Net(gpus)
 model = torch.nn.parallel.DDP(model)

 # training loop ...

 for machine_rank in range(world_size):
 torch.multiprocessing.spawn(
 one_machine, args=(world_size, backend),
 nprocs=world_size, join=True
)
Distributed Model Parallel (in development)
Conclusion
Scale from experimentation to production.
Questions?
Replace `float32` by `int8` to save bandwidth