
Transactions and Failure
Recovery 2

Instructor: Matei Zaharia
cs245.stanford.edu

https://cs245.stanford.edu/

Outline

Recap from last time

Undo/redo logging

External actions

Media failures

CS 245 3

Outline

Recap from last time

Undo/redo logging

External actions

Media failures

CS 245 4

Defining Correctness

Constraint: Boolean predicate about DB
state (both logical & physical data structures)

Consistent DB: satisfies all constraints

CS 245 5

Transaction: Collection of Actions
that Preserve Consistency

Consistent DB Consistent DB’T

CS 245 6

Our Failure Model

processor

memory disk

CPU

M D

Fail-stop failures of CPU & memory, but disk survives

CS 245 7

T1: Read (A,t); t ¬ t´2 A=B
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo Logging (Immediate modification)

CS 245 9

T1: Read (A,t); t ¬ t´2 A=B
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo Logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

CS 245 10

T1: Read (A,t); t ¬ t´2 A=B
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo Logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

16 <T1, B, 8>

CS 245 11

T1: Read (A,t); t ¬ t´2 A=B
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo Logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

16 <T1, B, 8>
16

CS 245 12

T1: Read (A,t); t ¬ t´2 A=B
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo Logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

<T1, commit>
16 <T1, B, 8>
16

CS 245 13

Redo Logging (deferred modification)

T1: Read(A,t); t ← t´2; write (A,t);
Read(B,t); t ← t´2; write (B,t);
Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB
LOG

CS 245 14

Redo Logging (deferred modification)

T1: Read(A,t); t ← t´2; write (A,t);
Read(B,t); t ← t´2; write (B,t);
Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB
LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>

CS 245 15

Redo Logging (deferred modification)

T1: Read(A,t); t ← t´2; write (A,t);
Read(B,t); t ← t´2; write (B,t);
Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB
LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>

output
16
16

CS 245 16

Redo Logging (deferred modification)

T1: Read(A,t); t ← t´2; write (A,t);
Read(B,t); t ← t´2; write (B,t);
Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB
LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>
<T1, end>

output
16
16

CS 245 17

Combining <Ti, end> Records

Want to delay DB flushes for hot objects

Say X is branch balance:
T1: ... update X...
T2: ... update X...
T3: ... update X...
T4: ... update X...

Actions:
write X
output X
write X
output X
write X
output X
write X
output X

CS 245 18

Combining <Ti, end> Records

Want to delay DB flushes for hot objects

Say X is branch balance:
T1: ... update X...
T2: ... update X...
T3: ... update X...
T4: ... update X...

Actions:
write X
output X
write X
output X
write X
output X
write X
output X

combined <end> record (checkpoint)
CS 245 19

Solution: Checkpoints

Simple, naïve checkpoint algorithm:
1. Stop accepting new transactions
2. Wait until all transactions finish
3. Flush all log records to disk (log)
4. Flush all buffers to disk (DB) (do not

discard buffers)
5. Write “checkpoint” record on disk (log)
6. Resume transaction processing
CS 245 20

Redo Logging:
What To Do at Recovery?

Redo log (disk):

<T
1,

A,
16

>

<T
1,

co
m

m
it>

<c
he

ck
po

in
t>

<T
2,

B,
17

>

<T
2,

co
m

m
it>

<T
3,

C
,2

1>

Crash...

CS 245 21

Redo Logging:
What To Do at Recovery?

Redo log (disk):

<T
1,

A,
16

>

<T
1,

co
m

m
it>

<c
he

ck
po

in
t>

<T
2,

B,
17

>

<T
2,

co
m

m
it>

<T
3,

C
,2

1>

Crash...

CS 245 22

T2 committed, so
REDO all its updates

Redo Logging:
What To Do at Recovery?

Redo log (disk):

<T
1,

A,
16

>

<T
1,

co
m

m
it>

<c
he

ck
po

in
t>

<T
2,

B,
17

>

<T
2,

co
m

m
it>

<T
3,

C
,2

1>

Crash...

CS 245 23

T3 didn’t commit,
so ignore it

T2 committed, so
REDO all its updates

Problems with Ideas So Far

Undo logging: need to wait for lots of I/O to
commit; can’t easily have backup copies of DB

Redo logging: need to keep all modified
blocks in memory until commit

CS 245 24

+ =

CS 245 25

Solution: Undo/Redo Logging!

Update = <Ti, X, new X val, old X val>

(X is the object updated)

CS 245 26

Undo/Redo Logging Rules

Object X can be flushed before or after Ti
commits

Log record (with undo/redo info) must be
flushed before corresponding data (WAL)

Flush log up to commit record at Ti commit

CS 245 27

Undo/Redo Logging:
What to Do at Recovery?
Undo/redo log (disk):

<c
he

ck
po

in
t>

<T
1,

 A
, 1

0,
 1

5>

<T
1,

 B
, 2

0,
 2

3>

<T
1,

 c
om

m
it>

<T
2,

 C
, 3

0,
 3

8>

<T
2,

 D
, 4

0,
 4

1>

Crash...

CS 245 28

Undo/Redo Logging:
What to Do at Recovery?
Undo/redo log (disk):

<c
he

ck
po

in
t>

<T
1,

 A
, 1

0,
 1

5>

<T
1,

 B
, 2

0,
 2

3>

<T
1,

 c
om

m
it>

<T
2,

 C
, 3

0,
 3

8>

<T
2,

 D
, 4

0,
 4

1>

Crash...

T1 committed, so
REDO all its updates

CS 245 29

Undo/Redo Logging:
What to Do at Recovery?
Undo/redo log (disk):

<c
he

ck
po

in
t>

<T
1,

 A
, 1

0,
 1

5>

<T
1,

 B
, 2

0,
 2

3>

<T
1,

 c
om

m
it>

<T
2,

 C
, 3

0,
 3

8>

<T
2,

 D
, 4

0,
 4

1>

Crash...

T1 committed, so
REDO all its updates

T2 didn’t commit, so
UNDO all its updates

CS 245 30

Non-Quiescent Checkpoints

L
O
G

for dirty memory
undo pages flushed

Start-ckpt
active txs:
T1,T2,...

end
ckpt

.........

...

CS 245 31

Non-Quiescent Checkpoints
memory

checkpoint process:

for i := 1 to M do
Output(buffer i)

[transactions run concurrently]

CS 245 32

Example 1: How to Recover?

no T1 commit
L
O
G

T1,-
a ... Ckpt

T1 ... Ckpt
end ... T1,-

b...

CS 245 33

Example 1: How to Recover?

no T1 commit
L
O
G

T1,-
a ... Ckpt

T1 ... Ckpt
end ... T1,-

b...

Undo T1 (undo a,b)

CS 245 34

Example 2: How to Recover?

L
O
G

... T1
a T1

b T1
c ... T1

cmt ...ckpt-
end

ckpt-s
T1

CS 245 35

L
O
G

... T1
a T1

b T1
c ... T1

cmt ...ckpt-
end

ckpt-s
T1

Redo T1 (redo b,c)

Example 2: How to Recover?

CS 245 36

What if a Checkpoint Did Not
Complete?

... ckpt
start T1

b T1
c ...ckpt-

start
ckpt
end

L
O
G

start of last
complete

checkpoint

ckpt-
start

Start recovery from last complete checkpoint

CS 245 37

Undo/Redo Recovery Algorithm
Backward pass (end of log → latest valid checkpoint start)
» construct set S of committed transactions
» undo actions of transactions not in S

Undo pending transactions
» follow undo chains for transactions in

(checkpoint’s active list) - S

Forward pass (latest checkpoint start → end of log)
» redo actions of all transactions in S

backward pass
forward pass

start
check-
point

CS 245 38

Outline

Recap from last time

Undo/redo logging

External actions

Media failures

CS 245 39

External Actions

E.g., dispense cash at ATM

Ti = a1 a2 …... aj …... an

💵

CS 245 40

Solution

(1) Execute real-world actions after commit

(2) Try to make idempotent

CS 245 41

Solution

(1) Execute real-world actions after commit

(2) Try to make idempotent
ATM

Give $$
(amt, Tid, time)

$
give(amt)

lastTid:
time:

CS 245 42

How Would You Handle These
Other External Actions?
Charge a customer’s credit card

Cancel someone’s hotel room

Send data into a streaming system

CS 245 43

Outline

Recap from last time

Undo/redo logging

External actions

Media failures

CS 245 44

Media Failure
(Loss of Nonvolatile Storage)

A: 16

CS 245 45

A: 16

Solution: Make copies of data!

Media Failure
(Loss of Nonvolatile Storage)

CS 245 46

Naïve Way: Redundant Storage

Example: keep 3 copies on separate disks

Output(X) → three outputs

Input(X) → three inputs + vote

X1 X2 X3

CS 245 47

Better Way: Log-Based Backup

active
database

backup
database

log

If active database is lost,
– restore active database from backup
– bring up-to-date using redo entries in log

CS 245 48

Backup Database

Just like a checkpoint, except that we write
the full database

database

create backup database:

for i := 1 to DB_Size do
[read DB block i; write to backup]

[transactions run concurrently]

CS 245 49

Backup Database

Just like a checkpoint, except that we write
the full database

database

create backup database:

for i := 1 to DB_Size do
[read DB block i; write to backup]

[transactions run concurrently]

Restore from backup DB and log:
Similar to recovery from checkpoint and log
CS 245 50

When Can Logs Be Discarded?

check-
point

DB
dump

last
needed
undo

not needed for
media recovery redo

not needed for undo
after system failure

not needed for
redo after system failure

log

time

last
needed
undo

not needed for
media recovery

CS 245 51

Summary

Consistency of data: maintain constraints

One source of problems: failures
» Logging
» Redundancy

Another source of problems: data sharing
» We’ll cover this next!

CS 245 52

Concurrency Control

Instructor: Matei Zaharia
cs245.stanford.edu

https://cs245.stanford.edu/

The Problem

T1 T2 … Tn

DB
(consistency
constraints)

Different transactions may need to access data
items at the same time, violating constraints

CS 245 54

Example

Constraint: all interns have equal salaries

T1: add $1000 to each intern’s salary

T2: double each intern’s salary

Salaries: 2000 2000 2000 2000 2000
3000 3000 400040003000

600060006000 5000 5000 😱
CS 245 55

The Problem

Even if each transaction maintains constraints
by itself, interleaving their actions does not

Could try to run just one transaction at a time
(serial schedule), but this has problems
» Too slow! Especially with external clients & IO

CS 245 56

High-Level Approach

Define isolation levels: sets of guarantees
about what transactions may experience

Strongest level: serializability (result is same
as some serial schedule)

Many others possible: snapshot isolation,
read committed, read uncommitted, …

CS 245 57

Fundamental Tradeoff

Weaker isolation
level

Stronger isolation
level

Easier to reason about
(can’t see others’ changes)

See others’ changes,
but more concurrency

CS 245 58

Interesting Fact

SQL standard defines serializability as “same
as a serial schedule”, but then also lists 3
types of “anomalies” to define levels:

Isolation Level Dirty Reads Unrepeatable
Reads

Phantom Reads

Read uncommitted Y Y Y
Read committed N Y Y
Repeatable read N N Y
Serializable N N N

CS 245 59

Interesting Fact

There are isolation levels other than
serializability that meet the last definition!
» I.e. don’t exhibit those 3 anomalies

Virtually no commercial DBs do serializability
by default, and some can’t do it at all

Time to call the lawyers?

CS 245 60

In This Course

We’ll first discuss how to offer serializability
» Many ideas apply to other isolation levels

We’ll see other isolation levels after

CS 245 61

Outline

What makes a schedule serializable?

Conflict serializability

Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
CS 245 62

Outline

What makes a schedule serializable?

Conflict serializability

Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
CS 245 63

Example

T1: Read(A) T2: Read(A)
A ¬ A+100 A ¬ A´2
Write(A) Write(A)
Read(B) Read(B)
B ¬ B+100 B ¬ B´2
Write(B) Write(B)

Constraint: A=B

CS 245 64

Schedule A
T1 T2

Read(A); A ¬ A+100
Write(A);
Read(B); B ¬ B+100;
Write(B);

Read(A); A ¬ A´2;
Write(A);
Read(B); B ¬ B´2;
Write(B);

CS 245 65

Schedule A
A B
25 25

125

125

250

250
250 250

T1 T2

Read(A); A ¬ A+100
Write(A);
Read(B); B ¬ B+100;
Write(B);

Read(A); A ¬ A´2;
Write(A);
Read(B); B ¬ B´2;
Write(B);

CS 245 66

Schedule B
T1 T2

Read(A); A ¬ A´2;
Write(A);
Read(B); B ¬ B´2;
Write(B);

Read(A); A ¬ A+100
Write(A);
Read(B); B ¬ B+100;
Write(B);

CS 245 67

Schedule B
T1 T2

Read(A); A ¬ A´2;
Write(A);
Read(B); B ¬ B´2;
Write(B);

Read(A); A ¬ A+100
Write(A);
Read(B); B ¬ B+100;
Write(B);

A B
25 25

50

50

150

150
150 150

CS 245 68

Schedule C
T1 T2

Read(A); A ¬ A+100
Write(A);

Read(A); A ¬ A´2;
Write(A);

Read(B); B ¬ B+100;
Write(B);

Read(B); B ¬ B´2;
Write(B);

CS 245 69

Schedule C
T1 T2
Read(A); A ¬ A+100
Write(A);

Read(A); A ¬ A´2;
Write(A);

Read(B); B ¬ B+100;
Write(B);

Read(B); B ¬ B´2;
Write(B);

A B
25 25

125

250

125

250
250 250

CS 245 70

Schedule D
T1 T2
Read(A); A ¬ A+100
Write(A);

Read(A); A ¬ A´2;
Write(A);
Read(B); B ¬ B´2;
Write(B);

Read(B); B ¬ B+100;
Write(B);

CS 245 71

Schedule D
T1 T2
Read(A); A ¬ A+100
Write(A);

Read(A); A ¬ A´2;
Write(A);
Read(B); B ¬ B´2;
Write(B);

Read(B); B ¬ B+100;
Write(B);

A B
25 25

125

250

50

150
250 150

CS 245 72

Schedule E
T1 T2
Read(A); A ¬ A+100
Write(A);

Read(A); A ¬ A+50;
Write(A);
Read(B); B ¬ B+50;
Write(B);

Read(B); B ¬ B+100;
Write(B);

Same as Schedule D
but with new T2’

CS 245 73

Schedule E
T1 T2’
Read(A); A ¬ A+100
Write(A);

Read(A); A ¬ A+50;
Write(A);
Read(B); B ¬ B+50;
Write(B);

Read(B); B ¬ B+100;
Write(B);

A B
25 25

125

175

75

175
175 175

Same as Schedule D
but with new T2’

CS 245 74

Want schedules that are “good”, regardless of
» initial state and
» transaction semantics

Only look at order of read & write operations

Example:

SC = r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

Our Goal

We don’t know the logic
in external client apps!

CS 245 75

SC’ = r1(A)w1(A)r1(B)w1(B)r2(A)w2(A)r2(B)w2(B)

T1 T2

Example:

SC = r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

CS 245 76

However, for SD:

SD = r1(A)w1(A)r2(A)w2(A)r2(B)w2(B)r1(B)w1(B)

Another way to view this:
» r1(B) after w2(B) means T1 should be after T2 in an

equivalent serial schedule (T2 ® T1)
» r2(A) after w1(A) means T2 should be after T1 in an

equivalent serial schedule (T1 ® T2)
» Can’t have both of these!

CS 245 77

Outline

What makes a schedule serializable?

Conflict serializability

Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
CS 245 78

