Delta Lake: Making Cloud Data Lakes Transactional and Scalable

Reynold Xin

@rxin

Stanford University, 2019-05-15
About Me

Databricks co-founder & Chief Architect
- Designed most major things in “modern day” Apache Spark
- #1 contributor to Spark by commits and net lines deleted

PhD in databases from Berkeley
Building data analytics platform is hard.
Traditional Data Warehouses

OLTP databases → ETL → Data Warehouse → SQL → Insights
Challenges with Data Warehouses

- **ETL pipelines are often complex and slow**
 Ad-hoc pipelines to process data and ingest into warehouse
 No insights until daily data dumps have been processed

- **Workloads often limited to SQL and BI tools**
 Data in proprietary formats
 Hard to do integrate streaming, ML, and AI workloads

- **Performance is expensive**
 Scaling up/out usually comes at a high cost
Dream of Data Lakes

Data streams → scalable ETL → Data Lake → SQL, ML, AI, streaming → Insights
Data Lakes + Spark = Awesome!

Data streams ➔ Data Lake ➔ Insights

STRUCTURED STREAMING

SQL, ML, STREAMING

The 1st Unified Analytics Engine
Advantages of Data Lakes

ETL pipelines are complex and slow — simpler and fast
Unified Spark API between batch and streaming simplifies ETL
Raw unstructured data available as structured data in minutes

Workloads limited not limited anything!
Data in files with open formats
Integrate with data processing and BI tools
Integrate with ML and AI workloads and tools

Performance is expensive cheaper
Easy and cost-effective to scale out compute and storage
Challenges of Data Lakes in practice
Challenges of Data Lakes in practice
Evolution of a Cutting-Edge Data Pipeline

- Events
- Data Lake
- Kafka
- Streaming Analytics
- Reporting
Evolution of a Cutting-Edge Data Pipeline

Events → Apache Kafka → Apache Spark → Streaming Analytics

Data Lake

Reporting
Challenge #1: Historical Queries?

Events → kafka → Spark → Streaming Analytics

Data Lake → Spark → Reporting

λ-arch
Challenge #2: Messy Data?

Events → Kafka → Spark (λ-arch) → Spark → Data Lake → Spark → Streaming Analytics

1. λ-arch
2. Validation

Validation

Reporting
Challenge #3: Mistakes and Failures?

Events → kafka → Spark → Streaming Analytics

1. λ-arch
2. Validation
3. Reprocessing

Data Lake

1. λ-arch
2. Validation

Reprocessing
Challenge #4: Query Performance?

Events → Apache Kafka → λ-arch → Apache Spark → Streaming Analytics

1. λ-arch
2. Validation
3. Reprocessing
4. Compaction

Data Lake

Partitioned

Reprocessing

Scheduled to Avoid Compaction

Compact Small Files

Reporting
Data Lake Reliability Challenges

- **Failed production jobs** leave data in corrupt state requiring tedious recovery.

- **Lack of consistency** makes it almost impossible to mix appends, deletes, upserts and get consistent reads.

- **Lack of schema enforcement** creates inconsistent and low quality data.
Data Lake Performance Challenges

Too many small or very big files - more time opening & closing files rather than reading content (worse with streaming)

Partitioning aka “poor man’s indexing” - breaks down when data has many dimensions and/or high cardinality columns

Neither storage systems, nor processing engines are great at handling very large number of subdir/files
Figuring out what to read is too slow

- Extremely slow dataframe loading
- Commands Blocked on Metadata Operations
Data integrity is hard

- Keep getting `FileNotFoundError` for tempView
- Different field types cause conflicting schemas
- CRITICAL production problem: inconsistent job
- Appending new data to a partitioned table
Band-aid solutions made it worse!

- refresh table issue - status?

- refresh table

- Keep getting FileNotFoundException for tempView
Everyone has the same problems

Concatenate small files

how to control number of parquet files within par...

Reading many small JSON files on ADLS in Databricks

parquet file optimization
THE GOOD OF DATA WAREHOUSES
• Pristine Data
• Transactional Reliability
• Fast SQL Queries

THE GOOD OF DATA LAKES
• Massive scale out
• Open Formats
• Mixed workloads
DELTA

The SCALE of data lake

The RELIABILITY & PERFORMANCE of data warehouse

The LOW-LATENCY of streaming
DELTA Scalable storage + Transactional log
Scalable storage

Table data stored as Parquet files on HDFS, AWS S3, Azure Blob Stores.

Transactional log

Sequence of metadata files to track operations made on the table stored in scalable storage along with table.
Log Structured Storage

Changes to the table are stored as ordered, atomic commits.

Each commit is a set of actions file in directory `_delta_log`

- `_delta_log/000.json`
- `_delta_log/001.json`

INSERT actions
- Add 001.parquet
- Add 002.parquet

UPDATE actions
- Remove 001.parquet
- Remove 002.parquet
- Add 003.parquet
Log Structured Storage

Readers read the log in atomic units thus reading consistent snapshots

000.json

001.json

readers will read either [001+002].parquet or 003.parquet and nothing in between

INSERT actions
- Add 001.parquet
- Add 002.parquet

UPDATE actions
- Remove 001.parquet
- Remove 002.parquet
- Add 003.parquet
Mutual Exclusion

Concurrent writers need to agree on the order of changes

New commit files must be created mutually exclusively

only one of the writers trying to concurrently write 002.json must succeed
Challenges with cloud storage

Different cloud storage systems have different semantics to provide atomic guarantees

<table>
<thead>
<tr>
<th>Cloud Storage</th>
<th>Atomic Files Visibility</th>
<th>Atomic Put if absent</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azure Blob Store, Azure Data Lake</td>
<td>✗</td>
<td>✓</td>
<td>Write to temp file, rename to final file if not present</td>
</tr>
<tr>
<td>AWS S3</td>
<td>✓</td>
<td>✗</td>
<td>Separate service to perform all writes directly (single writer)</td>
</tr>
</tbody>
</table>
Concurrency Control

Pessimistic Concurrency
Block others from writing anything
Hold lock, write data files, commit to log

✔ Avoid wasted work

✗ Distributed locks

Optimistic Concurrency
Assume it’ll be okay and write data files
Try to commit to the log, fail on conflict
Enough as write concurrency is usually low

✔ Mutual exclusion is enough!

✗ Breaks down if there a lot of conflicts
Solving Conflicts Optimistically

1. Record start version
2. Record reads/writes
3. If someone else wins, check if anything you read has changed.
4. Try again.

User 1
R: A
W: B

User 2
R: A
W: C

new file C does not conflict with new file B, so retry and commit successfully as 2.json
Solving Conflicts Optimistically

1. Record start version
2. Record reads/writes
3. If someone else wins, check if anything you read has changed.
4. Try again.

Deletions of file A by user 1 conflicts with deletion by user 2, user 2 operation fails.
Large tables can have millions of files in them! Even pulling them out of Hive [MySQL] would be a bottleneck.

Add 1.parquet
Add 2.parquet
Remove 1.parquet
Remove 2.parquet
Add 3.parquet
Challenges solved: Reliability

Problem:
Failed production jobs leave data in corrupt state requiring tedious recovery

Solution:
Failed write jobs do not update the commit log, hence partial / corrupt files not visible to readers
Challenges solved: Reliability

Challenge:
Lack of consistency makes it almost impossible to mix appends, deletes, upserts and get consistent reads

Solution:
All reads have full snapshot consistency
All successful writes are consistent
In practice, most writes don't conflict
Tunable isolation levels (serializability by default)
Challenges solved: Reliability

Challenge:
Lack of schema enforcement creates inconsistent and low quality data

Solution:
- Schema recorded in the log
- Fails attempts to commit data with incorrect schema
- Allows explicit schema evolution
- Allows invariant and constraint checks (high data quality)
Challenges solved: Performance

Challenge:
Too many small files increase resource usage significantly

Solution:
Transactionally performed compaction using OPTIMIZE

```
OPTIMIZE table WHERE date = '2019-04-04'
```
Challenges solved: Performance

Challenge: Partitioning breaks down with many dimensions and/or high cardinality columns

Solution: Optimize using multi-dimensional clustering on multiple columns

OPTIMIZE conns WHERE date = '2019-04-04'
ZORDER BY (srcIP, destIP)
Querying connection data at Apple

Ad-hoc query of connection data based on different columns

Connections
- date
- srcIp
- dstIp

> PBs
> trillions of rows

partitioning is bad as cardinality is high

```
SELECT count(*) FROM conns
WHERE date = '2019-04-04'
AND srcIp = '1.1.1.1'
```

```
SELECT count(*) FROM conns
WHERE date = '2019-04-04'
AND dstIp = '1.1.1.1'
```
Multidimensional Sorting

```
SELECT count(*) FROM conns
WHERE date = '2019-04-04'
AND srcIp = '1.1.1.1'
```

```
SELECT count(*) FROM conns
WHERE date = '2019-04-04'
AND dstIp = '1.1.1.1'
```
Multidimensional Sorting

SELECT count(*) FROM conns
WHERE date = '2019-04-04'
AND srcIp = '1.1.1.1'

SELECT count(*) FROM conns
WHERE date = '2019-04-04'
AND dstIp = '1.1.1.1'

ideal file size = 4 rows
Multidimensional Sorting

SELECT count(*) FROM conns
WHERE date = '2019-04-04'
AND srcIp = '1.1.1.1'

SELECT count(*) FROM conns
WHERE date = '2019-04-04'
AND dstIp = '1.1.1.1'

2 files
Multidimensional Sorting

SELECT count(*) FROM conns
WHERE date = '2019-04-04'
AND srcIp = '1.1.1.1'

SELECT count(*) FROM conns
WHERE date = '2019-04-04'
AND dstIp = '1.1.1.1'

great for major sorting dimension, not for others
Multidimensional Clustering

SELECT count(*) FROM conns
WHERE date = '2019-04-04'
AND srcIp = '1.1.1.1'

SELECT count(*) FROM conns
WHERE date = '2019-04-04'
AND dstIp = '1.1.1.1'

zorder space filling curve
Multidimensional Clustering

```
SELECT count(*) FROM conns
WHERE date = '2019-04-04'
AND srcIp = '1.1.1.1'
```

4 files

```
SELECT count(*) FROM conns
WHERE date = '2019-04-04'
AND dstIp = '1.1.1.1'
```

4 files

reasonably good for all dimensions
Data Pipeline @ Apple

Security Infra
IDS/IPS, DLP, antivirus, load balancers, proxy servers

Cloud Infra & Apps
AWS, Azure, Google Cloud

Servers Infra
Linux, Unix, Windows

Network Infra
Routers, switches, WAPs, databases, LDAP

Detect signal across user, application and network logs
Quickly analyze the blast radius with ad hoc queries
Respond quickly in an automated fashion
Scaling across petabytes of data and 100’s of security analysts

> 100TB new data/day
> 300B events/day
Data Pipeline @ Apple

Security Infra
IDS/IPS, DLP, antivirus, load balancers, proxy servers

Cloud Infra & Apps
AWS, Azure, Google Cloud

Servers Infra
Linux, Unix, Windows

Network Infra
Routers, switches, WAPs, databases, LDAP

Messy data not ready for analytics

Separate warehouses for each type of analytics

Dump

DATALAKE1

DATALAKE2

Complex ETL

DW1
Incidence Response

DW2
Alerting

DW3
Reports

> 100TB new data/day

> 300B events/day
Data Pipeline @ Apple

Security Infra
IDS/IPS, DLP, antivirus, load balancers, proxy servers

Cloud Infra & Apps
AWS, Azure, Google Cloud

Servers Infra
Linux, Unix, Windows

Network Infra
Routers, switches, WAPs, databases, LDAP

Messy data not ready for analytics

Separate warehouses for each type of analytics

Dump

Complex ETL

DW1
Incidence Response

DW2
Alerting

DW3
Reports

Took 20 engineers + 24 weeks
Hours of delay in accessing data
Very expensive to scale
Only 2 weeks of data in proprietary formats
No advanced analytics (ML)
Data Pipeline @ Apple

- Took 2 engineers + 2 weeks
- Data usable in minutes/seconds
- Easy and cheaper to scale
- Store 2 years of data in open formats
- Enables advanced analytics

Incidence Response
Alerting Reports

Took 2 engineers + 2 weeks
Data usable in minutes/seconds
Easy and cheaper to scale
Store 2 years of data in open formats
Enables advanced analytics
Current ETL pipeline at Databricks

1. Lambda architecture
 - Not needed, Delta handles both short and long term data

2. Validation
 - Easy as data in short term and long term data in one location

3. Reprocessing
 - Easy and seamless with Delta's transactional guarantees

4. Compaction
 -
Create Table ... Using **parquet** ...

dataframe
 .write
 .format("parquet")
 .save("/data")

... simply say **delta**

Create Table ... Using **delta** ...

dataframe
 .write
 .format("delta")
 .save("/data")

Easy to use Delta with Spark APIs
databricks DELTA

- **MASSIVE SCALE**: Scalable Compute & Storage
- **RELIABILITY**: ACID Transactions & Data Validation
- **PERFORMANCE**: Data Indexing & Caching (10-100x)
- **OPEN**: Open source & data stored as Parquet
- **LOW-LATENCY**: Integrated with Structured Streaming
Questions?