

CS 245 Midterm Exam
Spring 2019

● Please read all instructions (including these) carefully.

● There are 4 problems, some with multiple parts, for a total of 60 points. You have 80
minutes to work on the exam.

● The exam is open notes. You may use a laptop with all communication facilities (Wi-Fi,

Bluetooth, etc) disabled.

● Please write your answers in the space provided on the exam, and clearly mark your
solutions. You may use the backs of the exam pages as scratch paper. Please do not use
any additional scratch paper.

● Solutions will be graded on correctness and clarity. For the long-answer problems, please

show your intermediate work. Each problem has a relatively simple to explain solution,
and we may deduct points if your solution is much more complex than necessary. Partial
solutions will be graded for partial credit.

NAME: __

SUID: ___

In accordance with both the letter and spirit of the Honor Code, I have neither given nor received
assistance on this examination.

SIGNATURE: ___

Grading: P1=20 points, P2=8 points, P3=14 points, P4=18 points, total: 60 points.

Page 1/10

Problem 1: Short Answer Questions (20 points)

1. (2 points) What was the main benefit of System R over navigational databases such as
CODASYL? (Circle your answer.)

(a) System R could provide higher performance for hand-optimized applications.

(b) System R supported recovery from crashes.

(c) System R provided data independence.

(d) System R was implemented using B-trees.

2. (2 points) For each of the following abstractions, circle whether they are a logical data model
or a physical data structure.

i. B+ tree: LOGICAL PHYSICAL

ii. Relation: LOGICAL PHYSICAL

iii. Graph: LOGICAL PHYSICAL

iv. Hash table: LOGICAL PHYSICAL

3. (2 points) During System R’s development, its storage system changed from the XRM data
structure, which had a tuple list with pointers to “domain” files for the fields of each record, to a
B-tree. Which of the following queries are likely to be faster using a B-tree than XRM, assuming
both the B-tree and XRM have an index or inversion on the “salary” field? (Circle your answer.)

(a) SELECT name, dept, salary FROM users WHERE salary >= 100000

(b) SELECT AVG(salary) FROM users

(c) Both these queries are likely to be faster using a B-tree.

(d) Neither of these queries is likely to be faster using a B-tree.

Page 2/10

4. (2 points) How many failed disks can the RAID 0, RAID 1, and RAID 5 storage levels each
tolerate without losing data? (Circle your answer.)

(a) 0, 1 and 1 respectively for RAID 0, 1 and 5.

(b) 0, 0 and 1 respectively for RAID 0, 1 and 5.

(c) 0, 0 and 4 respectively for RAID 0, 1 and 5.

(d) 0, 1 and 5 respectively for RAID 0, 1 and 5.

5. (2 points) Why does sequential access generally provide higher throughput than random
access even for data in Random Access Memory (RAM)?

RAM fetches data in 64-byte cache lines, so applications waste some RAM throughput if they
fetch less than 64 bytes at a time. In addition, memory controllers are better optimized for
sequential streams of accesses.

6. (2 points) In C-Store, which of the following compression formats would allow a SELECT
COUNT(*) GROUP BY C query on column C without decompressing it? (Circle all that apply.)

i. Null suppression

ii. Dictionary encoding

iii. Run length encoding

iv. Lempel-Ziv

7. (2 points) Most databases have sparse primary indexes, but dense secondary indexes. Why is
it a bad idea to have a sparse secondary index?

Sparse indexes work well when a table is sorted by the key being indexed because we can easily
find values between the keys present in the index. Tables are not sorted by secondary keys, so
sparse indexes would make it impossible to find keys that are not in the index.

Page 3/10

8. (2 points) We need to store a table called Users with three fields: Name, Country and Job. We
are considering several ways to sort the records in this table. Which sort order(s) are likely to
lead to the fastest performance (fewest I/Os) for each of the following queries? (Check the box
with fastest performance in each row; if several options are equally fast, check all of them.)

Query
(SELECT *
WHERE …)

Order 1:
by Country

Order 2:
by Country and
then by Job within
each country

Order 3:
Z-order by
Country & Job

Order 4:
by Name

Name=‘Bob’ ✓

Country=‘US’ ✓ ✓

Country=‘US’
AND Job=‘SRE’

 ✓ ✓

Job=‘SRE’ ✓

9. (2 points) Why does Spark SQL provide a DataFrame API embedded in languages like Scala
and Python in addition to pure SQL statements? (Circle your answer.)

(a) SQL would not allow users to embed user-defined functions.

(b) The DataFrame API lets users structure their code using standard features in their
programming language, such as functions and classes.

(c) The DataFrame API gives more control because it does not go through a SQL optimizer.

(d) All of the above.

10. (2 points) Which of the following optimizations in relational databases would it not make
sense to apply in a deep learning framework like TensorFlow? (Circle your answer.)

(a) Data layout optimization to reduce random accesses.

(b) Compilation of operator graphs into executable code.

(c) Selectivity estimation based on data statistics.

(d) Substitution rules to simplify algebraic expressions.

Page 4/10

Problem 2: Relational Algebra (8 points)
a) (3 points) Write the relational algebra expression that represents the following SQL query:

SELECT students.name
FROM students NATURAL JOIN enrolments
WHERE enrolments.class = ‘CS245’ AND students.level = ‘PhD’

Πname(σclass=’CS245’ ∧ level=’PhD’(students ⨝ enrolments))

b) (5 points) For each of these following relational algebra expressions, circle whether it is
always true or can be false. If it can be false, briefly explain why.

i. (R ⨝ S) ⨝ T = (T ⨝ R) ⨝ S: TRUE FALSE

ii. σA(σB(R)) = σB(σA(R)): TRUE FALSE

iii. ΠA(ΠB(R)) = ΠB(ΠA(R)): TRUE FALSE

Fields in expression A might depend on B, so swapping the order won’t work.

iv. R ⨝ (S ∩ T) = (R ⨝ S) ∩ (R ⨝ T): TRUE FALSE

v. σA(R ⨝ S) = σA(R) ⨝ S: TRUE FALSE

This only works if A references just fields in relation R.

Page 5/10

Problem 3: Storage Tiers (14 points)
Green Storage Inc. has built a DNA-based storage device that holds a large amount of data, but
can only be read in 1 MB blocks at a rate of 100 blocks per second. This device costs $1000. In
contrast, 100 GB of DRAM costs $500 but can serve 50 GB/s of accesses.

a) (6 points) Netpics.com currently stores photos that it serves on its website in DRAM, and
these photos are each around 1 MB in size. How rarely should a photo be accessed for it to be
more cost-effective for Netpics.com to place it in DNA storage? (Please explain your work.)

This situation is analogous to the setup for the 5-minute rule. Moving a photo from RAM to
DNA storage makes sense if the additional cost of DNA IOPS from accessing there is less than
the cost of 1 MB of RAM. If a photo is accessed every X seconds, then its cost on RAM is

Cmem = (cost of 1 MB RAM) / (photos per MB RAM) = ($500 * (1 MB / 100 GB)) / 1 = $0.005

In contrast, its cost on DNA storage is

Cdisk = (cost of device) / (IOPS of device * X) = $1000 / (100 * X) = $10 / X

We have Cdisk< Cmem when $10/X < $0.005, i.e. X > 2000. So photos are worth moving out of
DRAM if they are accessed less frequently than once every 2000 seconds.

You can also get this by plugging in the numbers directly into the 5-minute rule formula.

Page 6/10

b) (8 points) Netpics.com now wants to design a B+ tree to index its data on the DNA device.
To do this, they need to figure out the optimal degree for the tree. Suppose that Netpics.com
wants to store a total of 200 million (2⨉108) photos on the device, that the keys for these records
are 90 bytes each, and that pointers to blocks on the device are 9 bytes each.

i. If Netpics.com decides to build a B+ tree of degree 10,000 (where each node can have 10,000
keys), what minimum depth does the tree need to have to index 2⨉108 records, and what is the
number of I/Os required to look up a key in the index when it has that depth? (Don’t count the
cost to then read that photo from storage; just the cost to look up its address using the index.)

In this case, each B+ tree node has 10,000 keys and 10,001 pointers for a total size of 990009
bytes, which is less than a 1 MB block, so each node fits in one storage block. A 2-level B+ tree
would have at most 10,0002 = 108 keys in its leaf nodes, so it would not be large enough to index
our data. A 3-level tree, however, would be large enough, with up to 1012 keys in its leaf nodes.
Thus we need a 3-level tree, and each node there takes 1 I/O to read for 3 I/Os per lookup.

ii. If Netpics.com decides to build a B+ tree of degree 20,000 instead, what minimum depth
does the tree need to have to index 2⨉108 records, and what is the number of I/Os to look up a
key in the index when it has this depth? (As above, don’t count the cost to then read that photo.)

In this case, each B+ tree node has 20,000 keys and 20,001 pointers for a total size of just under
2 MB, so each B+ tree node requires two blocks of storage. A 2-level B+ tree can hold as many
as 20,0002 = 4⨉108 keys in its leaf nodes, which is enough to index our data. Thus we need a
2-level tree, and each node there takes 2 I/O to read for 4 I/Os per lookup. Note that although
the tree is shallower than our previous one, we need more total I/Os to do lookups.

Page 7/10

Problem 4: Cost-Based Optimization (18 points)
In this problem, we will be optimizing the query X ⨝ Y ⨝ Z on relations X(A, B), Y(B, C) and
Z(C, D). (Recall that the notation X(A, B) means that relation X has attributes A and B.) We
have collected the following statistics about our relations, where T(R) is the number of tuples in
a relation and V(R, A) is the number of distinct values of attribute A in a relation:

T(X) = 200 T(Y) = 1000 T(Z) = 100
V(X, A) = 100 V(Y, B) = 10 V(Z, C) = 100
V(X, B) = 20 V(Y, C) = 1000 V(Z, D) = 20

a) (8 points) As a first step to cost-based optimization, we must estimate the statistics of some
potential intermediate and final tables in our query. Use the estimation rules based on T() and
V() that we discussed in class to estimate the T() and V() statistics for the following tables:

i. X ⨝ Y

T(X ⨝ Y) = T(X) T(Y) / max(V(X, B), V(Y, B)) = 200 * 1000 / 20 = 10,000
V(X ⨝ Y, A) = V(X, A) = 100
V(X ⨝ Y, B) = min(V(X, B), V(Y, B)) = 10
V(X ⨝ Y, C) = V(Y, C) = 1000

ii. Y ⨝ Z

T(Y ⨝ Z) = T(Y) T(Z) / max(V(Y, C), V(Z, C)) = 1000 * 100 / 1000 = 100
V(Y ⨝ Z, B) = V(Y, B) = 10
V(Y ⨝ Z, C) = min(V(Y, C), V(Z, C)) = 100
V(Y ⨝ Z, D) = V(Z, D) = 20

iii. X ⨝ Y ⨝ Z
We can write this as (X ⨝ Y) ⨝ Z and use the results from above for X ⨝ Y:

T(X ⨝ Y ⨝ Z) = T(X ⨝ Y) T(Z) / max(V(X ⨝ Y, C), V(Z, C)) = 10,000 * 100 / 1000 = 1000
V(X ⨝ Y ⨝ Z, A) = V(X ⨝ Y, A) = 100
V(X ⨝ Y ⨝ Z, B) = V(X ⨝ Y, B) = 10
V(X ⨝ Y ⨝ Z, C) = min(V(X ⨝ Y, C), V(Z, C)) = 100
V(X ⨝ Y ⨝ Z, D) = V(Z, D) = 20

Page 8/10

b) (10 points) We also need to estimate the cost of physical operations we might run in the plan.
Suppose that our database engine only supports sort-merge joins, where the two input tables
must be sorted by the join attribute to produce an output table that also goes to disk (the engine
does not support streaming these results directly into another join). When tables are not sorted by
the join attribute, the engine first uses a sort operator that takes 4·b disk I/Os for a table
containing b blocks. Finally, suppose that records in our tables (including intermediate tables)
are 10 bytes, a disk block is 1000 bytes, and our original tables are sorted as follows:

X(A,B) is sorted by field B Y(B,C) is sorted by field B Z(C,D) is sorted by field C

Using this information, estimate the number of disk I/Os for the following physical plans,
counting the I/Os for both reading and writing. Please also briefly explain how each plan runs
and how any intermediate tables are sorted.

i. X ⨝ Y

X and Y are both sorted by the join attribute, so the cost is B(X) + B(Y) + B(X ⨝ Y) for writing
the output at the end. A 1000-byte block holds 100 10-byte records in our system, so B() of any
table is the number of tuples divided by 100. This gives:

cost = B(X) + B(Y) + B(X ⨝ Y) = 2 + 10 + 100 = 112 I/Os

ii. Y ⨝ Z

We need both tables to be sorted by the join attribute C to join them. Since table Y is not sorted
by C, it takes 4 B(Y) = 40 I/Os to sort it. After that, we can merge-join the tables in cost B(Y) +
B(Z) + B(Y ⨝ Z). This gives:

cost = 4 B(Y) + B(Y) + B(Z) + B(Y ⨝ Z) = 40 + 10 + 1 + 1 = 52 I/Os

Page 9/10

iii. (X ⨝ Y) ⨝ Z

We start with the results for X ⨝ Y above, which took 112 I/Os to compute. The table X ⨝ Y is
sorted by the X ⨝ Y join attribute B, so we need to re-sort it by C to join it with Z. This takes a
total of 4 B(X ⨝ Y) = 400 I/Os. Next, the join with Z takes B(X ⨝ Y) + B(Z) + B(X ⨝ Y ⨝ Z),
giving:

cost = 112 + 400 + 100 + 1 + 10 = 623 I/Os

iv. X ⨝ (Y ⨝ Z)

We start with the results for Y ⨝ Z above, which took 52 I/Os to compute. The table Y ⨝ Z is
sorted by the Y ⨝ Z join attribute C, so we need to re-sort it by B to join it with X. This takes a
total of 4 B(Y ⨝ Z) = 4 I/Os. Next, the join with X takes B(Y ⨝ Z) + B(X) + B(X ⨝ Y ⨝ Z),
giving:

cost = 52 + 4 + 1 + 2 + 10 = 69 I/Os

Page 10/10

