CS 245 Midterm Exam Spring 2019

- Please read all instructions (including these) carefully.
- There are 4 problems, some with multiple parts, for a total of 60 points. You have 80 minutes to work on the exam.
- The exam is open notes. You may use a laptop with all communication facilities (Wi-Fi, Bluetooth, etc) disabled.
- Please write your answers in the space provided on the exam, and clearly mark your solutions. You may use the backs of the exam pages as scratch paper. Please do not use any additional scratch paper.
- Solutions will be graded on correctness and clarity. For the long-answer problems, please show your intermediate work. Each problem has a relatively simple to explain solution, and we may deduct points if your solution is much more complex than necessary. Partial solutions will be graded for partial credit.

NAME: \qquad

SUID: \qquad

In accordance with both the letter and spirit of the Honor Code, I have neither given nor received assistance on this examination.

SIGNATURE: \qquad

Grading: $\mathrm{P} 1=20$ points, $\mathrm{P} 2=8$ points, $\mathrm{P} 3=14$ points, $\mathrm{P} 4=18$ points, total: 60 points.

Problem 1: Short Answer Questions (20 points)

1. (2 points) What was the main benefit of System R over navigational databases such as CODASYL? (Circle your answer.)
(a) System R could provide higher performance for hand-optimized applications.
(b) System R supported recovery from crashes.
(c) System R provided data independence.
(d) System R was implemented using B-trees.
2. (2 points) For each of the following abstractions, circle whether they are a logical data model or a physical data structure.

i.	B+ tree:	LOGICAL	PHYSICAL
ii.	Relation:	LOGICAL	PHYSICAL
iii.	Graph:	LOGICAL	PHYSICAL
iv.	Hash table:	LOGICAL	PHYSICAL

3. (2 points) During System R's development, its storage system changed from the XRM data structure, which had a tuple list with pointers to "domain" files for the fields of each record, to a B-tree. Which of the following queries are likely to be faster using a B-tree than XRM, assuming both the B-tree and XRM have an index or inversion on the "salary" field? (Circle your answer.)
(a) SELECT name, dept, salary FROM users WHERE salary $>=100000$
(b) SELECT AVG(salary) FROM users
(c) Both these queries are likely to be faster using a B-tree.
(d) Neither of these queries is likely to be faster using a B-tree.
4. (2 points) How many failed disks can the RAID 0, RAID 1, and RAID 5 storage levels each tolerate without losing data? (Circle your answer.)
(a) 0,1 and 1 respectively for RAID 0,1 and 5 .
(b) 0,0 and 1 respectively for RAID 0,1 and 5 .
(c) 0,0 and 4 respectively for RAID 0,1 and 5 .
(d) 0,1 and 5 respectively for RAID 0,1 and 5 .
5. (2 points) Why does sequential access generally provide higher throughput than random access even for data in Random Access Memory (RAM)?

RAM fetches data in 64-byte cache lines, so applications waste some RAM throughput if they fetch less than 64 bytes at a time. In addition, memory controllers are better optimized for sequential streams of accesses.
6. (2 points) In C-Store, which of the following compression formats would allow a SELECT COUNT(*) GROUP BY C query on column C without decompressing it? (Circle all that apply.)

[^0]7. (2 points) Most databases have sparse primary indexes, but dense secondary indexes. Why is it a bad idea to have a sparse secondary index?

Sparse indexes work well when a table is sorted by the key being indexed because we can easily find values between the keys present in the index. Tables are not sorted by secondary keys, so sparse indexes would make it impossible to find keys that are not in the index.
8. (2 points) We need to store a table called Users with three fields: Name, Country and Job. We are considering several ways to sort the records in this table. Which sort order(s) are likely to lead to the fastest performance (fewest I/Os) for each of the following queries? (Check the box with fastest performance in each row; if several options are equally fast, check all of them.)

Query (SELECT * WHERE ...)	Order 1: by Country	Order 2: by Country and then by Job within each country	Order 3: Z-order by Country \& Job	Order 4: by Name
Name='Bob'				\checkmark
Country='US'	\checkmark	\checkmark		
Country='US' AND Job='SRE'		\checkmark	\checkmark	
Job='SRE'			\checkmark	

9. (2 points) Why does Spark SQL provide a DataFrame API embedded in languages like Scala and Python in addition to pure SQL statements? (Circle your answer.)
(a) SQL would not allow users to embed user-defined functions.
(b) The DataFrame API lets users structure their code using standard features in their programming language, such as functions and classes.
(c) The DataFrame API gives more control because it does not go through a SQL optimizer.
(d) All of the above.
10. (2 points) Which of the following optimizations in relational databases would it not make sense to apply in a deep learning framework like TensorFlow? (Circle your answer.)
(a) Data layout optimization to reduce random accesses.
(b) Compilation of operator graphs into executable code.
(c) Selectivity estimation based on data statistics.
(d) Substitution rules to simplify algebraic expressions.

Problem 2: Relational Algebra (8 points)

a) ($\mathbf{3}$ points) Write the relational algebra expression that represents the following SQL query:

SELECT students.name
FROM students NATURAL JOIN enrolments
WHERE enrolments.class $=$ 'CS245' AND students.level $=$ ' PhD '

$$
\Pi_{\text {name }}\left(\sigma_{\text {class }=\text { 'CS245 }} \wedge \text { level='PhD },(\text { students } \bowtie \text { enrolments })\right)
$$

b) (5 points) For each of these following relational algebra expressions, circle whether it is always true or can be false. If it can be false, briefly explain why.
i. $\quad(R \bowtie S) \bowtie T=(T \bowtie R) \bowtie S:$

TRUE
FALSE
ii. $\quad \sigma_{A}\left(\sigma_{B}(R)\right)=\sigma_{B}\left(\sigma_{A}(R)\right)$:

TRUE
FALSE
iii. $\quad \Pi_{A}\left(\Pi_{B}(R)\right)=\Pi_{B}\left(\Pi_{A}(R)\right)$:

Fields in expression A might depend on B, so swapping the order won't work.
iv. $\quad R \bowtie(S \cap T)=(R \bowtie S) \cap(R \bowtie T)$:

TRUE
FALSE
v. $\quad \sigma_{A}(R \bowtie S)=\sigma_{A}(R) \bowtie S:$

This only works if A references just fields in relation R.

Problem 3: Storage Tiers (14 points)

Green Storage Inc. has built a DNA-based storage device that holds a large amount of data, but can only be read in 1 MB blocks at a rate of 100 blocks per second. This device costs $\$ 1000$. In contrast, 100 GB of DRAM costs $\$ 500$ but can serve $50 \mathrm{~GB} / \mathrm{s}$ of accesses.
a) (6 points) Netpics.com currently stores photos that it serves on its website in DRAM, and these photos are each around 1 MB in size. How rarely should a photo be accessed for it to be more cost-effective for Netpics.com to place it in DNA storage? (Please explain your work.)

This situation is analogous to the setup for the 5-minute rule. Moving a photo from RAM to DNA storage makes sense if the additional cost of DNA IOPS from accessing there is less than the cost of 1 MB of RAM. If a photo is accessed every X seconds, then its cost on RAM is
$\mathrm{C}_{\text {mem }}=(\operatorname{cost}$ of 1 MB RAM $) /($ photos per MB RAM $)=(\$ 500 *(1 \mathrm{MB} / 100 \mathrm{~GB})) / 1=\$ 0.005$

In contrast, its cost on DNA storage is
$\mathrm{C}_{\text {disk }}=($ cost of device $) /(\operatorname{IOPS}$ of device $* \mathrm{X})=\$ 1000 /(100 * X)=\$ 10 / \mathrm{X}$
We have $\mathrm{C}_{\text {disk }}<\mathrm{C}_{\text {mem }}$ when $\$ 10 / \mathrm{X}<\$ 0.005$, i.e. $\mathrm{X}>2000$. So photos are worth moving out of DRAM if they are accessed less frequently than once every 2000 seconds.

You can also get this by plugging in the numbers directly into the 5-minute rule formula.
b) (8 points) Netpics.com now wants to design a B+ tree to index its data on the DNA device. To do this, they need to figure out the optimal degree for the tree. Suppose that Netpics.com wants to store a total of 200 million $\left(2 \times 10^{8}\right)$ photos on the device, that the keys for these records are 90 bytes each, and that pointers to blocks on the device are 9 bytes each.
i. If Netpics.com decides to build a B+ tree of degree 10,000 (where each node can have 10,000 keys), what minimum depth does the tree need to have to index 2×10^{8} records, and what is the number of I/Os required to look up a key in the index when it has that depth? (Don't count the cost to then read that photo from storage; just the cost to look up its address using the index.)

In this case, each $B+$ tree node has 10,000 keys and 10,001 pointers for a total size of 990009 bytes, which is less than a 1 MB block, so each node fits in one storage block. A 2-level B+ tree would have at most $10,000^{2}=10^{8}$ keys in its leaf nodes, so it would not be large enough to index our data. A 3-level tree, however, would be large enough, with up to 10^{12} keys in its leaf nodes. Thus we need a 3-level tree, and each node there takes 1 I/O to read for $\mathbf{3}$ I/Os per lookup.
ii. If Netpics.com decides to build a $B+$ tree of degree 20,000 instead, what minimum depth does the tree need to have to index 2×10^{8} records, and what is the number of I/Os to look up a key in the index when it has this depth? (As above, don't count the cost to then read that photo.)

In this case, each $B+$ tree node has 20,000 keys and 20,001 pointers for a total size of just under 2 MB , so each B+ tree node requires two blocks of storage. A 2-level B+ tree can hold as many as $20,000^{2}=4 \times 10^{8}$ keys in its leaf nodes, which is enough to index our data. Thus we need a 2-level tree, and each node there takes 2 I/O to read for 4 I/Os per lookup. Note that although the tree is shallower than our previous one, we need more total I/Os to do lookups.

Problem 4: Cost-Based Optimization (18 points)

In this problem, we will be optimizing the query $\mathrm{X} \bowtie \mathrm{Y} \bowtie \mathrm{Z}$ on relations $\mathrm{X}(\mathrm{A}, \mathrm{B}), \mathrm{Y}(\mathrm{B}, \mathrm{C})$ and $\mathrm{Z}(\mathrm{C}, \mathrm{D})$. (Recall that the notation $X(A, B)$ means that relation X has attributes A and B.) We have collected the following statistics about our relations, where $T(R)$ is the number of tuples in a relation and $V(R, A)$ is the number of distinct values of attribute A in a relation:

$$
\begin{array}{lll}
\mathrm{T}(\mathrm{X})=200 & \mathrm{~T}(\mathrm{Y})=1000 & \mathrm{~T}(\mathrm{Z})=100 \\
\mathrm{~V}(\mathrm{X}, \mathrm{~A})=100 & \mathrm{~V}(\mathrm{Y}, \mathrm{~B})=10 & \mathrm{~V}(\mathrm{Z}, \mathrm{C})=100 \\
\mathrm{~V}(\mathrm{X}, \mathrm{~B})=20 & \mathrm{~V}(\mathrm{Y}, \mathrm{C})=1000 & \mathrm{~V}(\mathrm{Z}, \mathrm{D})=20
\end{array}
$$

a) (8 points) As a first step to cost-based optimization, we must estimate the statistics of some potential intermediate and final tables in our query. Use the estimation rules based on T() and V() that we discussed in class to estimate the T() and V() statistics for the following tables:
i. $\mathrm{X} \bowtie \mathrm{Y}$
$T(X \bowtie Y)=T(X) T(Y) / \max (V(X, B), V(Y, B))=200 * 1000 / 20=10,000$
$\mathrm{V}(\mathrm{X} \bowtie \mathrm{Y}, \mathrm{A})=\mathrm{V}(\mathrm{X}, \mathrm{A})=100$
$\mathrm{V}(\mathrm{X} \bowtie \mathrm{Y}, \mathrm{B})=\min (\mathrm{V}(\mathrm{X}, \mathrm{B}), \mathrm{V}(\mathrm{Y}, \mathrm{B}))=10$
$\mathrm{V}(\mathrm{X} \bowtie \mathrm{Y}, \mathrm{C})=\mathrm{V}(\mathrm{Y}, \mathrm{C})=1000$
ii. $Y \bowtie Z$
$\mathrm{T}(\mathrm{Y} \bowtie \mathrm{Z})=\mathrm{T}(\mathrm{Y}) \mathrm{T}(\mathrm{Z}) / \max (\mathrm{V}(\mathrm{Y}, \mathrm{C}), \mathrm{V}(\mathrm{Z}, \mathrm{C}))=1000 * 100 / 1000=100$
$\mathrm{V}(\mathrm{Y} \bowtie \mathrm{Z}, \mathrm{B})=\mathrm{V}(\mathrm{Y}, \mathrm{B})=10$
$\mathrm{V}(\mathrm{Y} \bowtie \mathrm{Z}, \mathrm{C})=\min (\mathrm{V}(\mathrm{Y}, \mathrm{C}), \mathrm{V}(\mathrm{Z}, \mathrm{C}))=100$
$\mathrm{V}(\mathrm{Y} \bowtie \mathrm{Z}, \mathrm{D})=\mathrm{V}(\mathrm{Z}, \mathrm{D})=20$

iii. $\mathrm{X} \bowtie \mathrm{Y} \bowtie \mathrm{Z}$

We can write this as $(\mathrm{X} \bowtie \mathrm{Y}) \bowtie \mathrm{Z}$ and use the results from above for $\mathrm{X} \bowtie \mathrm{Y}$:
$T(X \bowtie Y \bowtie Z)=T(X \bowtie Y) T(Z) / \max (V(X \bowtie Y, C), V(Z, C))=10,000 * 100 / 1000=1000$
$V(X \bowtie Y \bowtie Z, A)=V(X \bowtie Y, A)=100$
$\mathrm{V}(\mathrm{X} \bowtie \mathrm{Y} \bowtie \mathrm{Z}, \mathrm{B})=\mathrm{V}(\mathrm{X} \bowtie \mathrm{Y}, \mathrm{B})=10$
$\mathrm{V}(\mathrm{X} \bowtie \mathrm{Y} \bowtie \mathrm{Z}, \mathrm{C})=\min (\mathrm{V}(\mathrm{X} \bowtie \mathrm{Y}, \mathrm{C}), \mathrm{V}(\mathrm{Z}, \mathrm{C}))=100$
$\mathrm{V}(\mathrm{X} \bowtie \mathrm{Y} \bowtie \mathrm{Z}, \mathrm{D})=\mathrm{V}(\mathrm{Z}, \mathrm{D})=20$
b) ($\mathbf{1 0}$ points) We also need to estimate the cost of physical operations we might run in the plan. Suppose that our database engine only supports sort-merge joins, where the two input tables must be sorted by the join attribute to produce an output table that also goes to disk (the engine does not support streaming these results directly into another join). When tables are not sorted by the join attribute, the engine first uses a sort operator that takes $4 \cdot b$ disk I/Os for a table containing b blocks. Finally, suppose that records in our tables (including intermediate tables) are 10 bytes, a disk block is 1000 bytes, and our original tables are sorted as follows:
$X(A, B)$ is sorted by field $B \quad Y(B, C)$ is sorted by field $B \quad Z(C, D)$ is sorted by field C

Using this information, estimate the number of disk I/Os for the following physical plans, counting the I/Os for both reading and writing. Please also briefly explain how each plan runs and how any intermediate tables are sorted.
i. $\mathrm{X} \bowtie \mathrm{Y}$
X and Y are both sorted by the join attribute, so the cost is $B(X)+B(Y)+B(X \bowtie Y)$ for writing the output at the end. A 1000-byte block holds 100 10-byte records in our system, so B() of any table is the number of tuples divided by 100 . This gives:
cost $=\mathrm{B}(\mathrm{X})+\mathrm{B}(\mathrm{Y})+\mathrm{B}(\mathrm{X} \bowtie \mathrm{Y})=2+10+100=112 \mathrm{I} / \mathrm{Os}$

ii. $\mathrm{Y} \bowtie \mathrm{Z}$

We need both tables to be sorted by the join attribute C to join them. Since table Y is not sorted by C , it takes $4 \mathrm{~B}(\mathrm{Y})=40 \mathrm{I} / \mathrm{Os}$ to sort it. After that, we can merge-join the tables in cost $\mathrm{B}(\mathrm{Y})+$ $B(Z)+B(Y \bowtie Z)$. This gives:
cost $=4 \mathrm{~B}(\mathrm{Y})+\mathrm{B}(\mathrm{Y})+\mathrm{B}(\mathrm{Z})+\mathrm{B}(\mathrm{Y} \bowtie \mathrm{Z})=40+10+1+1=52 \mathrm{I} / \mathrm{Os}$
iii. $(X \bowtie Y) \bowtie Z$

We start with the results for $\mathrm{X} \bowtie \mathrm{Y}$ above, which took $112 \mathrm{I} / \mathrm{Os}$ to compute. The table $\mathrm{X} \bowtie \mathrm{Y}$ is sorted by the $\mathrm{X} \bowtie \mathrm{Y}$ join attribute B , so we need to re-sort it by C to join it with Z . This takes a total of $4 \mathrm{~B}(\mathrm{X} \bowtie \mathrm{Y})=400 \mathrm{I} / \mathrm{Os}$. Next, the join with Z takes $\mathrm{B}(\mathrm{X} \bowtie \mathrm{Y})+\mathrm{B}(\mathrm{Z})+\mathrm{B}(\mathrm{X} \bowtie \mathrm{Y} \bowtie \mathrm{Z})$, giving:

$$
\operatorname{cost}=112+400+100+1+10=623 \mathrm{I} / \mathrm{Os}
$$

iv. $\mathrm{X} \bowtie(\mathrm{Y} \bowtie \mathrm{Z})$

We start with the results for $\mathrm{Y} \bowtie \mathrm{Z}$ above, which took $52 \mathrm{I} / \mathrm{Os}$ to compute. The table $\mathrm{Y} \bowtie \mathrm{Z}$ is sorted by the $\mathrm{Y} \bowtie \mathrm{Z}$ join attribute C , so we need to re-sort it by B to join it with X . This takes a total of $4 \mathrm{~B}(\mathrm{Y} \bowtie \mathrm{Z})=4 \mathrm{I} / \mathrm{Os}$. Next, the join with X takes $\mathrm{B}(\mathrm{Y} \bowtie Z)+\mathrm{B}(\mathrm{X})+\mathrm{B}(\mathrm{X} \bowtie \mathrm{Y} \bowtie \mathrm{Z})$, giving:
cost $=52+4+1+2+10=69 \mathrm{I} / \mathrm{Os}$

[^0]: i. Null suppression
 ii. Dictionary encoding
 iii. Run length encoding
 iv. Lempel-Ziv

