CS 245: Principles of
Data-Intensive Systems

Instructor: Mateil Zaharia
cs245.stanford.edu

https://cs245.stanford.edu/

Outline

Why study data-intensive systems?
Course logistics
Key issues and themes

A bit of history

My Background

Berkeley PhD in 2013

IIIIIIIIIIIIIIIIIIIIII

AAAAAA "‘Z Open source distributed data
K processing framework

€databricks Cofounder of analytics company

Stanford Research in systems for ML

CS 245 3

Why Study
Data-Intensive Systems?

Most important computer applications must
manage, update and query datasets

» Bank, store, fleet controller, search app, ...

Data quality, quantity & timeliness becoming
even more important with Al

» Machine learning = algorithms that generalize
from data

What Are
Data-Intensive Systems?

Relational databases: most popular type of
data-intensive system (MySQL, Oracle, etc)

Many systems facing similar concerns:

message queues, key-value stores, streaming
systems, ML frameworks, your custom app?

Goal: learn the main issues and principles that

span all data-intensive systems

CS 245 5

Typical System Challenges

Reliability in the face of hardware crashes,
bugs, bad user input, etc

Concurrency: access by multiple users
Performance: throughput, latency, etc
Access interface from many, changing apps

Security and data privacy

Practical Benefits of Studying
These Systems

Learn how to select & tune data systems
Learn how to build them

Learn how to build apps that have to tackle
some of these same challenges
» E.9. cross-geographic-region billing app,
custom search engine, etc

Scientific Interest

Interesting algorithmic and design ideas

In many ways, data systems are the highest-
level successful programming abstractions

Programming: The Dream

High-level spec

=,

Working application

CS 245

P

CS 245

Interpretation
of Computer
Programs

L E)
Gerald
with Julie S

10

Programming: The Reality

= stackoverflow ™| ? @ =

Home How to horizontally center a <div>?

PUBLIC
= stackoverflow (™) P @ =
Home Why calling setState method doesn't mutate the state
PUBLIC immediately?
® Sstack Overflow QD (1] =
. Ok i1ty and make 1y ' StaCkoverflow B9 o=
Users 32 I've read a bunch of si
o to look up in the first p| Home How to find which version of TensorFlow is installed in
As follows: PUBLIC my SyStem?
— | @ Stack Overflow
;:":’ E\/. class NightlifeTy I
[— = stackoverflow 0w oeos

Home Why does HTML think “chucknorris” is a color? 208 asked Jul 24 16 at 606

PUBLIC %64 o 78 ﬁ ;':; : I;mp7aka1res
© Stack Overflow | How come certain random strings produce colors when entered as background colors in HTML? For
example:
Tags 6907
Users

<body bgcolor="chucknorris"> test </body>

‘ ‘ Jobs active oldest votes
® Run code snippet [2 Expand snippet

Teams =gl the same headings used by TensorFlow's
Q8Aforwork L _— ...produces a document with a red background across all browsers and platforms.

Learn More ‘ Interestingly, while chucknorri produces a red background as well, chucknorr produces a yellow

[Mg Fp— |

Programming with Databases

PostgreSQL

High-level spec

Relational
algebra

Actually manages:
Durability
Concurrency
Query optimization
Security

CS 245

12

Outline

Why study data-intensive systems?
Course logistics
Key issues and themes

A bit of history

Teaching Assistants

Ben Braun

Deepak Pratiksha
Narayanan Thaker

CS 245

James Thomas

14

Course Format

Lectures in class
Assigned paper readings (Q&A in class)
3 programming assignments

Midterm and final

This is the 15t run of my version of the course,

so we're still figuring some things out

CS 245 16

Paper Readings

A few classic or recent research papers

Read the paper before the class: we want to
discuss it together!

We’ll post discussion questions on the class
website a week before lecture

How Should You Read a Paper?

Read: “How to Read a Paper”

TLDR: don't just
go through end

to end; focus on
key ideas/sections

CS 245

How to Read a Paper

Version of February 17, 2016

S. Keshav
David R. Cheriton School of Computer Science, University of Waterloo
Waterloo, ON, Canada
keshav@uwaterloo.ca

ABSTRACT

Rescarchers spend a great deal of time reading research pa-
pers. However, this skill is rarely taught, leading to much
wasted effort. This article outlines a practical and efficient
three-pass method for reading research papers. I also de-
scribe how to use this method to do a literature survey.

1. INTRODUCTION

Rescarchers must read papers for several reasons: to re-
view them for a conference or a class, to keep current in
their field, or for a literature survey of a new field. A typi-
cal researcher will likely spend hundreds of hours every year
reading papers.

Learning to efficiently read a paper is a critical but rarely
taught skill. Beginning graduate students, therefore, must
learn on their own using trial and error. Students waste
much effort in the process and are frequently driven to frus-
tration.

For many years I have used a simple ‘three-pass’ approach
to prevent me from drowning in the details of a paper be-
fore getting a bird’s-eye-view. It allows me to estimate the
amount of time required to review a set of papers. Moreover,
I can adjust the depth of paper evaluation depending on my
needs and how much time I have. This paper describes the
approach and its use in doing a literature survey.

2. THE THREE-PASS APPROACH

The key idea is that you should read the paper in up to
three passes, instead of starting at the beginning and plow-
ing your way to the end. Each pass accomplishes specific
goals and builds upon the previous pass: The first pass
gives you a general idea about the paper. The second pass
lets you grasp the paper’s content, but not its details. The
third pass helps you understand the paper in depth.

1. Read the conclusions

5. Glance over the references, mentally ticking off the
ones you've already read

At the end of the first pass, you should be able to answer
the five Cs:

1. Category: What type of paper is this? A measure-
ment paper? An analysis of an existing system? A
description of a research prototype?

2. Context: Which other papers is it related to? Which
theoretical bases were used to analyze the problem?

3. Correctness: Do the assumptions appear to be valid?

\. Contributions: What are the paper’s main contribu-
tions?

5. Clarity: Is the paper well written?

Using this information, you may choose not to read fur-
ther (and not print it out, thus saving trees). This could be
because the paper doesn’t interest you, or you don’t know
enough about the area to understand the paper, or that the
authors make invalid assumptions. The first pass is ade-
quate for papers that aren’t in your research area, but may
someday prove relevant

Incidentally, when you write a paper, you can expect most
reviewers (and readers) to make only one pass over it. Take
care to choose coherent section and sub-section titles and
to write concise and comprehensive abstracts. If a reviewer
and the gist after one pass, the paper will

cannot unders
likely be rejected; if a reader cannot understand the high-
lights of the paper after five minutes, the paper will likely
never be read. For these reasons, a ‘graphical abstract’ that
summarizes a paper with a single well-chosen figure is an ex-

Our First Paper

e'll be reading part of “A History and
valuation of System R” for next class!

Ind Instructions and questions on website

COMPUTING
PRACTICES

A History and Evaluation
of System R

Donald D. Chamberlin Thomas G. Price

Morton M. Astrahan Franco Putzolu

Michael W. Blasgen Patricia Griffiths Selinger
James N. Gray Mario Schkolnick

W. Frank King Donald R. Slutz

Bruce G. Lindsay Irving L. Traiger
Raymond Lorie Bradford W. Wade
James W. Mehl Robert A. Yost

IBM Research Laboratory
San Jose, California

1. Introduction

Throughout the history of infor-
mation storage in computers, one of SUMMARY: System R, an experimental database system,
the most readily observable trends \aq constructed to demonstrate that the usability advantages
has been the focus on data indepen- f th \ati | dat del b lized i t ith
dence. C.J. Date [27] defined data ©f the relational data model can be realized in a system wit
independence as “immunity of ap- the complete function and high performance required for
plications to change in storage struc- ~ everyday production use. This paper describes the three
ture and access strategy.” Modern principal phases of the System R project and discusses some

CS 245 :alﬂl’-‘*: 5)'5“{25 O"C'hdf*}l‘ali“dfpe“- of the lessons learned from System R about the design of
ence by providing a high-level user oiavic oo o o nd datab in general.
interface through which users deal Clauonal SY and y in general
with the information content of their
data rather than the varions bite

19

Programming Assignments

Three assignments implemented in Java or
Scala, and submitted online

1. Storage and access methods
2. Query optimization
3. Transactions and recovery

Done individually; A1 posted next week

Midterm and Final

Written tests based on material covered in
lectures, assignments and readings

Final will cover the entire course but focus on
the second half

Grading

45% Assignments (15% each)
25% Midterm
30% Final

Keeping in Touch

Sign up for Piazza on the course website
to receive announcements!

cs245.stanford.edu

http://cs245.stanford.edu/

Outline

Why study data-intensive systems?
Course logistics
Key issues and themes

A bit of history

Recall: Examples of
Data-Intensive Systems

Relational databases: most popular type of
data-intensive system (MySQL, Oracle, etc)

Many systems facing similar concerns:
message queues, key-value stores, streaming
systems, ML frameworks, your custom app?

Basic Components

Logical dataset
Clients / users (e.g. table, graph)

mmmmmm Address Age
me

i i 123 Fantasy Way Anaheim 7
Bat Man 321 Cavern Ave Gotham 54
Wonder | Woman | 967 Truth Way Paradise Eg
nald Duck 555 Quack Street Halard &
Bugs Bunny 567 Carrot 5 Rascal E]
iiley Coyote Acme Way Canyon G
Cat Woman PurfectStrest | Hairball 2
T Bird 543]

Physical storage
(data structures)

Administrator

CS 245 26

Examples

Logical Physical

System Data Model Storage API Other Features
Relational Relations B-trees, column SQL, ODBC Durability,
databases (i.e. tables) stores, indexes, transactions,

query planning,
migrations, ...

Examples

Logical Physical

System Data Model Storage API Other Features

Relational Relations B-trees, column SQL, ODBC Durability,

databases (i.e. tables) stores, indexes, transactions,
query planning,
migrations, ...

TensorFlow

Examples

Logical Physical
System Data Model Storage API Other Features
Relational Relations B-trees, column SQL, ODBC Durability,
databases (i.e. tables) stores, indexes, transactions,
query planning,
migrations, ...

TensorFlow Tensors

Examples

Logical Physical

System Data Model Storage API Other Features
Relational Relations B-trees, column SQL, ODBC Durability,
databases (i.e. tables) stores, indexes, transactions,
query planning,
migrations, ...
TensorFlow Tensors NCHW, NHWC,
sparse arrays, ...

Examples

Logical Physical

System Data Model Storage API Other Features
Relational Relations B-trees, column SQL, ODBC Durability,
databases (i.e. tables) stores, indexes, transactions,
query planning,
migrations, ...
TensorFlow Tensors NCHW, NHWC, Python DAG
sparse arrays, ... construction

Examples

Logical Physical

System Data Model Storage API Other Features
Relational Relations B-trees, column SQL, ODBC Durability,
databases (i.e. tables) stores, indexes, transactions,
query planning,
migrations, ...
TensorFlow Tensors NCHW, NHWC, Python DAG query planning,
sparse arrays, ... construction distribution,
specialized HW

Examples

Logical Physical

System Data Model Storage API Other Features
Relational Relations B-trees, column SQL, ODBC Durability,
databases (i.e. tables) stores, indexes, transactions,
query planning,
migrations, ...
TensorFlow Tensors NCHW, NHWC, Python DAG query planning,
sparse arrays, ... construction distribution,

specialized HW

Apache
Kafka

Examples

Logical Physical

System Data Model Storage API Other Features
Relational Relations B-trees, column SQL, ODBC Durability,
databases (i.e. tables) stores, indexes, transactions,
query planning,
migrations, ...
TensorFlow Tensors NCHW, NHWC, Python DAG query planning,
sparse arrays, ... construction distribution,

specialized HW

Apache Streams of Partitions, Publish, Durability,
Kafka opaque records compaction subscribe rescaling

Examples

Logical Physical

System Data Model Storage API Other Features
Relational Relations B-trees, column SQL, ODBC Durability,
databases (i.e. tables) stores, indexes, transactions,
query planning,
migrations, ...
TensorFlow Tensors NCHW, NHWC, Python DAG query planning,
sparse arrays, ... construction distribution,

specialized HW

Apache Streams of Partitions, Publish, Durability,
Kafka opaque records compaction subscribe rescaling
Apache

Spark RDDs

Examples

Logical
Data Model

System

Physical
Storage

API

Other Features

Relational Relations B-trees, column SQL, ODBC Durability,
databases (i.e. tables) stores, indexes, transactions,
query planning,
migrations, ...
TensorFlow Tensors NCHW, NHWC, Python DAG query planning,
sparse arrays, ... construction distribution,
specialized HW
Apache Streams of Partitions, Publish, Durability,
Kafka opaque records compaction subscribe rescaling
Apache Collections of Read external Functional Distribution,
Spark RDDs Java objects systems, cache API, SQL query planning,

transactions®

Some Typical Concerns

Access interface from many, changing apps
Performance: throughput, latency, etc

Reliability in the face of hardware crashes,
bugs, bad user input, etc

Concurrency: access by multiple users

Security and data privacy

Example

Message queue system

\ /
T

Producers Consumers

What should happen if two consumers read() at

the same time?

Example

Message queue system

R —
\>

B -
Producers Consumers

What should happen if a consumer reads a

message but then immediately crashes?

Example

Message queue system

\ /
\
/-\

Producers Consumers

Can a producer put in 2 messages atomically?

Two Big Ideas

Declarative interfaces
» Apps specify what they want, not how to do it

» Example: “store a table with 2 integer columns”,
but not how to encode it on disk

» Example: “count records where column1 = 5"

Transactions

» Encapsulate multiple app actions into one
atomic request (fails or succeeds as a whole)

» Concurrency models for multiple users
» Clear interactions with failure recovery

Declarative Interface Examples

SQL
» Abstract “table” data model, many physical
Implementations

» Specify queries in a restricted language that the
database can optimize

TensorFlow

» Operator graph gets mapped & optimized to
different hardware devices

Functional programming (e.g. MapReduce)
» Says what to run but not how to do scheduling

Transaction Examples

SQL databases

» Commands to start, abort or end transactions
based on multiple SQL statements

Apache Spark, MapReduce

» Make the multi-part output of a job appear
atomically when all partitions are done

Stream processing systems

» Count each input record exactly once despite
crashes, network failures, etc

Outline

Why study data-intensive systems?
Course logistics
Key issues and themes

A bit of history

Early Data Management

At first, each application did its own data
management directly against storage

I'd like a | have just
computerized the thing
account system
Ve ODe
Bank

write _block()

&
l

CS 245

read_block()

Problems with App Storage
Management

How should we lay out and navigate data?
How do we keep the application reliable?

What if we want to share data across apps?

Every app is solving the same problems!

Navigational Databases (1964)

P107 P113 P125 P132
CODASYL, IDS
J

S$51 Price Price
Al

Data is graph of records

§57

Procedural APl based
on navigating links: = FmmimmEE

get department with name='Sales’
get first employee in set department-employees
until end-of-set do {
get next employee in set department-employees
process employee

}

“Data independence”. app code not tied to storage details

I raise the example of Copernicus today to illustrate
a parallel that I believe exists in the computing or, more
properly, the information systems world. We have
spent the last 50 years with almost Ptolemaic informa-
tion systems. These systems, and most of the thinking
about systems, were based on a ‘‘computer centered”

concept.

CS 245

A new basis for understanding is
available in the area of information systems. It is
achieved by a shift from a computer-centered to the
database-centered point of view. This new understand-
ing will lead to new solutions to our database problems
and speed our conquest of the n-dimensional data
structures which best model the complexities of the
real world.

Charles W. Bachman, “The Programmer as Navigator”
48

Edgar F. (Ted) Codd

Proposed the relational DB
model, with declarative
queries & storage (1970)

Relation = table with unique
key identifying each row

Data independence++:

apps don’t even specify
how to execute query

49

Key Ideas in Relational DBMS

Logical data model:

Clients / users tables with references

:
across them (foreign keys)
mmmmmm Last Address
Name
Mickey Mouse 123 Fantasy Way
Bat Man 321 Cavern Ave
Wonder Woman 987 Truth Way
Donald Duck 555 Quack Street Address City
Bugs Bunny 567 Carrot Street 123 Fantasy Way Anaheim
Wiley Coyote 999 Acme Way 321 Cavern Ave Gotham
Cat ‘Woman 234 Purrfect Street. 987 Truth Way Paradise
Twe Bird

Relational

algebra
(e.g. SQL)

/<'>\ raw files, B-trees,
- hash indexes, etc
& g

ety 53 555 Quack Street alla
567 Carrot Street ascal
999 Acme Way anyon
234 Purrfect Street. Hairball
54 Ttotitaw

Physical storage:

o Query planning,
Administrator access methods,

transactions, etc

CS 245 50

Early Relational DBMS

IBM System R (1974): research system
» Led to IBM SQL/DS in 1981

Ingres (1974). Mike Stonebraker at Berkeley
» Led to PostgreSQL

Oracle database (released 1979)

Next class, we'll cover database

architecture by looking at System R

Rest of the Course

We'll explore both “big ideas” we saw, focusing on
relational DBs but showing examples in other areas

* Declarative interfaces
« Data independence and data storage formats
« Query languages and optimization
« Transactions, concurrency & recovery
« Concurrency models
« Failure recovery
« Distributed storage and consistency

Don’t forget to sign up for Piazza!

52

