
Query Execution

Instructor: Matei Zaharia
cs245.stanford.edu

https://cs245.stanford.edu/

From Last Time: Indexes

Conventional indexes

B-trees

Hash indexes

Multi-key indexing

CS 245 2

Example

Find records where

DEPT = “Toy” AND SALARY > 50k

CS 245 3

Strategy I:

Use one index, say Dept.

Get all Dept = “Toy” records
and check their salary

I1

CS 245 4

Strategy II:

Use 2 indexes; manipulate record pointers

Toy Sal
> 50k

CS 245 5

Strategy III:

Multi-key index

One idea:

I1

I2

I3

CS 245 6

Example

Example
Record

Dept
Index

Salary
Index

Name=Joe
DEPT=Sales
SALARY=15k

Art
Sales
Toy

10k
15k
17k
21k

12k
15k
15k
19k

CS 245 7

h

n
b

i a

co

de

g

f

m

l

k
j

k-d Tree
Splits dimensions in any order
to hold k-dimensional data

CS 245 8

h

n
b

i a

co

d

10 20

10 20

e

g

f

m

l

k
j

k-d Tree

CS 245 9

h

n
b

i a

co

d

10 20

10 20

e

g

f

m

l

k
j25 15 35 20

40

30

20

10

k-d Tree

CS 245 10

h

n
b

i a

co

d

10 20

10 20

e

g

f

m

l

k
j25 15 35 20

40

30

20

10

5

15 15

k-d Tree

CS 245 11

h

n
b

i a

co

d

10 20

10 20

e

g

f

m

l

k
j25 15 35 20

40

30

20

10

5

15 15

h i a bcd efg

n omlj k

Efficient range
queries in both

dimensions

k-d Tree

CS 245 12

Summary

Wide range of indexes for different data types
and queries (e.g. range vs exact)

Issues to balance: query time, update cost,
and size of index

CS 245 13

Example Storage Strategies

MySQL: transactional DBMS
» Row-oriented storage with 16 KB pages
» Variable length records with headers, overflow
» Index types:

• B-tree
• Hash (in memory only)
• R-tree (spatial data)
• Inverted lists for full text search

» Can compress pages with Lempel-Ziv

CS 245 14

Example Storage Strategies

Apache Parquet + Hive: analytical data lake
» Column-oriented storage as set of ~1 GB files

(each file has a slice of all columns)
» Various compression and encoding schemes

at the level of pages in a file
• Special scheme for nested fields (Dremel)

» Header with statistics at the start of each file
• Min/max of columns, nulls, Bloom filter

» Files partitioned into directories by one key

CS 245 15

Query Execution

Overview

Relational operators

Execution methods

CS 245 16

Query Execution Overview

Recall that one of our key principles in data
intensive systems was declarative APIs
» Specify what you want to compute, not how

We saw how these can translate into many
storage strategies

How to execute queries in a declarative API?

CS 245 17

Query Execution Overview

Query representation
(e.g. SQL)

Logical query plan
(e.g. relational algebra)

Optimized logical plan

Physical plan
(code/operators to run)

Many execution
methods: per-record
exec, vectorization,

compilation

CS 245 18

Plan Optimization Methods

Rule-based: systematically replace some
expressions with other expressions
» Replace X OR TRUE with TRUE
» Replace M*A + M*B with M*(A+B) for matrices

Cost-based: propose several execution plans
and pick best based on a cost model

Adaptive: update execution plan at runtime

CS 245 19

Execution Methods

Interpretation: walk through query plan
operators for each record

Vectorization: walk through in batches

Compilation: generate code (like System R)

CS 245 20

parse

convert

apply rules

estimate result sizes

consider physical plans estimate costs

pick best

execute

{P1, P2, …}

{(P1,C1), (P2,C2), ...}

Pi

result

SQL query

parse tree

logical query plan

“improved” l.q.p

l.q.p. +sizes

statistics

Typical RDBMS Execution

CS 245 21

Query Execution

Overview

Relational operators

Execution methods

CS 245 22

The Relational Algebra

Collection of operators over tables (relations)
» Each table has named attributes (fields)

Codd’s original RA: tables are sets of tuples
(unordered and tuples cannot repeat)

SQL’s RA: tables are bags (multisets) of
tuples; unordered but each tuple may repeat

CS 245 23

Relational Algebra Operators

Basic set operators:

Intersection: R ∩ S

Union: R ∪ S

Difference: R – S

Cartesian Product: R ⨯ S

for tables with same schema

CS 245 24

{ (r, s) | r ∈ R, s ∈ S }

Relational Algebra Operators

Basic set operators:

Intersection: R ∩ S

Union: R ∪ S

Difference: R – S

Cartesian Product: R ⨯ S

CS 245 25

consider both distinct (set union)
and non-distinct (bag union)

Relational Algebra Operators

Special query processing operators:

Selection: σcondition(R)

Projection: Pexpressions(R)

Natural Join: R ⨝ S

{ r ∈ R | condition(r) is true }

{ expressions(r) | r ∈ R }

{ (r, s) ∈ R ⨯ S) | r.key = s.key }
where key is the common fields

CS 245 26

Relational Algebra Operators

Special query processing operators:

Aggregation: keysGagg(attr)(R)

Examples: departmentGMax(salary)(Employees)

GMax(salary)(Employees)

SELECT agg(attr)
FROM R
GROUP BY keys

CS 245 27

Algebraic Properties

Many properties about which combinations of
operators are equivalent
» That’s why it’s called an algebra!

CS 245 28

Properties: Unions, Products
and Joins
R ∪ S = S ∪ R
R ∪ (S ∪ T) = (R ∪ S) ∪ T

R ⨯ S = S ⨯ R
(R ⨯ S) ⨯ T = R ⨯ (S ⨯ T)

R ⨝ S = S ⨝ R
(R ⨝ S) ⨝ T = R ⨝ (S ⨝ T)
CS 245 29

Attribute order in a relation
doesn’t matter either

Tuple order in a relation
doesn’t matter (unordered)

Properties: Selects

σp∧q(R) =

σp∨q(R) =

CS 245 30

Properties: Selects

σp∧q(R) = σp(σq(R))

σp∨q(R) = σp(R) ∪ σq(R)

CS 245 31

careful with repeated elements

Bags vs. Sets

R = {a,a,b,b,b,c}

S = {b,b,c,c,d}

R ∪ S = ?

CS 245 32

Bags vs. Sets

R = {a,a,b,b,b,c}

S = {b,b,c,c,d}

R ∪ S = ?

CS 245 33

• Option 1: SUM of counts
R ∪ S = {a,a,b,b,b,b,b,c,c,c,d}

• Option 2: MAX of counts
R ∪ S = {a,a,b,b,b,c,c,d}

Executive Decision

Use “SUM” option for bag unions

Some rules that work for set unions cannot
be used for bags

CS 245 34

Let: X = set of attributes
Y = set of attributes

PX∪Y (R) =

Properties: Project

CS 245 35

Let: X = set of attributes
Y = set of attributes

PX∪Y (R) = PX(PY(R))

Properties: Project

CS 245 36

Let: X = set of attributes
Y = set of attributes

PX∪Y (R) = PX(PY(R))

Properties: Project

CS 245 37

Properties: σ + ⨝
Let p = predicate with only R attribs

q = predicate with only S attribs

m = predicate with only R, S attribs

σp(R ⨝ S) =

σq(R ⨝ S) =
CS 245 38

Properties: σ + ⨝
Let p = predicate with only R attribs

q = predicate with only S attribs

m = predicate with only R, S attribs

σp(R ⨝ S) = σp(R) ⨝ S

σq(R ⨝ S) = R ⨝ σq(S)
CS 245 39

Properties: σ + ⨝
Some rules can be derived:

σp∧q(R ⨝ S) =

σp∧q∧m(R ⨝ S) =

σp∨q(R ⨝ S) =

CS 245 40

Properties: σ + ⨝
Some rules can be derived:

σp∧q(R ⨝ S) = σp(R) ⨝ σq(S)

σp∧q∧m(R ⨝ S) = σm(σp(R) ⨝ σq(S))

σp∨q(R ⨝ S) = (σp(R) ⨝ S) ∪ (R ⨝ σq(S))

CS 245 41

Prove One, Others for Practice

σp∧q(R ⨝ S) = σp (σq(R ⨝ S))

= σp (R ⨝ σq(S))

= σp (R) ⨝ σq(S)

CS 245 42

Properties: P + σ

Let x = subset of R attributes

z = attributes in predicate p
(subset of R attributes)

Px(σp (R)) =

CS 245 43

Properties: P + σ

Let x = subset of R attributes

z = attributes in predicate p
(subset of R attributes)

Px(σp (R)) = σp(Px(R))

CS 245 44

Properties: P + σ

Let x = subset of R attributes

z = attributes in predicate p
(subset of R attributes)

Px(σp (R)) = Px(σp(Px∪z(R)))

CS 245 45

Let x = subset of R attributes
y = subset of S attributes
z = intersection of R,S attributes

Px∪y(R ⨝ S) = Px∪y ((Px∪z (R)) ⨝ (Py∪z (S)))

CS 245 46

Properties: P + ⨝

parse

convert

apply rules

estimate result sizes

consider physical plans estimate costs

pick best

execute

{P1, P2, …}

{(P1,C1), (P2,C2), ...}

Pi

result

SQL query

parse tree

logical query plan

“improved” l.q.p

l.q.p. +sizes

statistics

Typical RDBMS Execution

CS 245 47

Example SQL Query
SELECT title
FROM StarsIn
WHERE starName IN (

SELECT name
FROM MovieStar
WHERE birthdate LIKE ‘%1960’

);

(Find the movies with stars born in 1960)

CS 245 48

Parse Tree <Query>

<SFW>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <RelName> <Tuple> IN <Query>

title StarsIn <Attribute> (<Query>)

starName <SFW>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <RelName> <Attribute> LIKE <Pattern>

name MovieStar birthDate ‘%1960’

CS 245 49

Ptitle

sstarName=name

StarsIn Pname

sbirthdate LIKE ‘%1960’

MovieStar

´

Logical Query Plan

CS 245 52

Improved Logical Query Plan

Ptitle

starName=name

StarsIn Pname

sbirthdate LIKE ‘%1960’

MovieStar

Question:
Push Ptitle
to StarsIn?

CS 245 53

Need expected size

StarsIn

MovieStar

P

s

Estimate Result Sizes

CS 245 54

Parameters: join order,
memory size, project attributes, ...Hash join

Seq scan Index scan Parameters:
select condition, ...

StarsIn MovieStar

One Physical Plan

H

CS 245 55

Parameters: join order,
memory size, project attributes, ...Hash join

Index scan Seq scan Parameters:
select condition, ...

StarsIn MovieStar

Another Physical Plan

H

CS 245 56

Sort-merge join

Seq scan Seq scan

StarsIn MovieStar

Another Physical Plan

CS 245 57

Which plan is likely to be better?

Logical plan

P1 P2 … Pn

C1 C2 … Cn

Pick best!

Estimating Plan Costs

Physical plan
candidates

CS 245 58

Covered in next few lectures!

Query Execution

Overview

Relational operators

Execution methods

CS 245 59

Now That We Have a Plan,
How Do We Run it?

Several different options that trade between
complexity, setup time & performance

CS 245 60

Example: Simple Query

SELECT quantity * price
FROM orders
WHERE productId = 75

Pquanity*price (σproductId=75 (orders))

CS 245 61

Method 1: Interpretation
interface Operator {
Tuple next();

}

class TableScan: Operator {
String tableName;

}

class Select: Operator {
Operator parent;
Expression condition;

}

class Project: Operator {
Operator parent;
Expression[] exprs;

}

CS 245 62

interface Expression {
Value compute(Tuple in);

}

class Attribute: Expression {
String name;

}

class Times: Expression {
Expression left, right;

}

class Equals: Expression {
Expression left, right;

}

Example Expression Classes

CS 245 63

class Attribute: Expression {
String name;

Value compute(Tuple in) {
return in.getField(name);

}
}

class Times: Expression {
Expression left, right;

Value compute(Tuple in) {
return left.compute(in) * right.compute(in);

}
}

probably better to use a
numeric field ID instead

Example Operator Classes

CS 245 64

class TableScan: Operator {
String tableName;

Tuple next() {
// read next record from file

}
}

class Project: Expression {
Operator parent;
Expression[] exprs;

Tuple next() {
tuple = parent.next();
fields = [expr(tuple) for expr in exprs];
return new Tuple(fields);

}
}

Running Our Query with
Interpretation

CS 245 65

ops = Project(

expr = Times(Attr(“quantity”), Attr(“price”)),

parent = Select(

expr = Equals(Attr(“productId”), Literal(75)),

parent = TableScan(“orders”)

)

);

while(true) {

Tuple t = ops.next();

if (t != null) {

out.write(t);

} else {

break;

}

}

Pros & cons of this
approach?

recursively calls Operator.next()
and Expression.compute()

Method 2: Vectorization

Interpreting query plans one record at a time
is simple, but it’s too slow
» Lots of virtual function calls and branches for

each record (recall Jeff Dean’s numbers)

Keep recursive interpretation, but make
Operators and Expressions run on batches

CS 245 66

Implementing Vectorization

CS 245 67

class TupleBatch {
// Efficient storage, e.g.
// schema + column arrays

}

interface Operator {
TupleBatch next();

}

class Select: Operator {
Operator parent;
Expression condition;

}

...

class ValueBatch {
// Efficient storage

}

interface Expression {
ValueBatch compute(
TupleBatch in);

}

class Times: Expression {
Expression left, right;

}

...

Typical Implementation

Values stored in columnar arrays (e.g. int[])
with a separate bit array to mark nulls

Tuple batches fit in L1 or L2 cache

Operators use SIMD instructions to update
both values and null fields without branching

CS 245 68

Pros & Cons of Vectorization

+ Faster than record-at-a-time if the query
processes many records

+ Relatively simple to implement

– Lots of nulls in batches if query is selective

– Data travels between CPU & cache a lot

CS 245 69

Method 3: Compilation

Turn the query into executable code

CS 245 70

Compilation Example

Pquanity*price (σproductId=75 (orders))

class MyQuery {
void run() {

Iterator<OrdersTuple> in = openTable(“orders”);
for(OrdersTuple t: in) {

if (t.productId == 75) {
out.write(Tuple(t.quantity * t.price));

}
}

}
}

CS 245 71

generated class with the right
field types for orders table

Can also theoretically generate
vectorized code

Pros & Cons of Compilation

+ Potential to get fastest possible execution

+ Leverage existing work in compilers

– Complex to implement

– Compilation takes time

– Generated code may not match hand-written

CS 245 72

What’s Used Today?

Depends on context & other bottlenecks

Transactional databases (e.g. MySQL):
mostly record-at-a-time interpretation

Analytical systems (Vertica, Spark SQL):
vectorization, sometimes compilation

ML libs (TensorFlow): mostly vectorization
(the records are vectors!), some compilation

CS 245 73

