
Query Optimization

Instructor: Matei Zaharia
cs245.stanford.edu

https://cs245.stanford.edu/

Query Execution Overview

Query representation
(e.g. SQL)

Logical query plan
(e.g. relational algebra)

Optimized logical plan

Physical plan
(code/operators to run)

CS 245 2

Outline

What can we optimize?

Rule-based optimization

Data statistics

Cost models

Cost-based plan selection

CS 245 3

Outline

What can we optimize?

Rule-based optimization

Data statistics

Cost models

Cost-based plan selection

CS 245 4

What Can We Optimize?

Operator graph: what operators do we run,
and in what order?

Operator implementation: for operators with
several impls (e.g. join), which one to use?

Access paths: how to read each table?
» Index scan, table scan, C-store projections, …

CS 245 5

Typical Challenge

There is an exponentially large set of
possible query plans

Result: we’ll need techniques to prune the
search space and complexity involved

Access paths
for table 1

Access paths
for table 2

Algorithms
for join 1

Algorithms
for join 2⨯ ⨯ ⨯ ⨯ …

CS 245 6

Outline

What can we optimize?

Rule-based optimization

Data statistics

Cost models

Cost-based plan selection

CS 245 7

What is a Rule?

Procedure to replace part of the query plan
based on a pattern seen in the plan

Example: When I see expr OR TRUE for an
expression expr, replace this with TRUE

CS 245 8

Implementing Rules

Each rule is typically a function that walks
through query plan to search for its pattern

void replaceOrTrue(Plan plan) {
for (node in plan.nodes) {
if (node instanceof Or) {
if (node.right == Literal(true)) {
plan.replace(node, Literal(true));
break;

}
// Similar code if node.left == Literal(true)

}
}

}

Or

expr TRUE

node

node.left node.right

CS 245 9

Implementing Rules

Rules are often grouped into phases
» E.g. simplify Boolean expressions, pushdown

selects, choose join algorithms, etc

Each phase runs rules till they no longer apply
plan = originalPlan;
while (true) {
for (rule in rules) {
rule.apply(plan);

}
if (plan was not changed by any rule) break;

}

CS 245 10

Result

Simple rules can work together to optimize
complex query plans (if designed well):

SELECT * FROM users WHERE
(age>=16 && loc==CA) || (age>=16 && loc==NY) || age>=18

(age>=16) && (loc==CA || loc==NY) || age>=18

(age>16 && (loc IN (CA, NY)) || age>=18

age>=18 || (age>16 && (loc IN (CA, NY))

CS 245 11

Example Extensible Optimizer

For Monday, you’ll read about Spark SQL’s
Catalyst optimizer
» Written in Scala using its pattern matching

features to simplify writing rules
» >500 contributors worldwide, >1000 types of

expressions, and hundreds of rules

We’ll also use Spark SQL in assignment 2

CS 245 12

CS 245 13

CS 245 14

Common Rule-Based
Optimizations
Simplifying expressions in select, project, etc
» Boolean algebra, numeric expressions, string

expressions (e.g. regex -> contains), etc
» SQL statements have redundancies because

they’re generated by humans who optimized
for readability, or by code

Simplifying relational operator graphs
» Select, project, join, etc: we’ll see some soon!

These relational optimizations have biggest impact
CS 245 15

Common Rule-Based
Optimizations
Selecting access paths and operator
implementations in simple cases
» Index column predicate ⇒ use index
» Small table ⇒ use hash join against it
» Aggregation on field with few values ⇒ use

in-memory hash table

Rules also often used to do type checking
and analysis (easy to write recursively)

Also very
high impact

CS 245 16

Common Relational Rules

Push selects as far down the plan as possible

Recall:

σp(R ⨝ S) = σp(R) ⨝ S if p only references R

σq(R ⨝ S) = R ⨝ σq(S) if q only references S

σp∧q(R ⨝ S) = σp(R) ⨝ σq(S) if p on R, q on S

Idea: reduce # of records early to minimize work
in later ops; enable index access pathsCS 245 17

Common Relational Rules

Push projects as far down as possible

Recall:

Px(σp(R)) = Px(σp(Px∪z(R))) z = the fields in p

Px∪y(R ⨝ S) = Px∪y ((Px∪z (R)) ⨝ (Py∪z (S)))

Idea: don’t process fields you’ll just throw away

x = fields in R, y = in S, z = in both

CS 245 18

Project Rules Can Backfire!

Example: R has fields A, B, C, D, E
p: A=3 ∧ B=“cat”
x: {E}

Px(σp(R)) vs Px(σp(P{A,B,E}(R)))

CS 245 19

What if R has Indexes?

A = 3 B = “cat”

Intersect buckets to get
pointers to matching tuples

In this case, should do σp(R) first!
CS 245 20

Bottom Line

Many possible transformations aren’t always
good for performance

Need more info to make good decisions
» Data statistics: properties about our input or

intermediate data to be used in planning
» Cost models: how much time will an operator

take given certain input data statistics?

CS 245 21

Outline

What can we optimize?

Rule-based optimization

Data statistics

Cost models

Cost-based plan selection

CS 245 22

What Are Data Statistics?

Information about the tuples in a relation that
can be used to estimate size & cost
» Example: # of tuples, average size of tuples,

distinct values for each attribute, % of null
values for each attribute

Typically maintained by the storage engine as
tuples are added & removed in a relation
» File formats like Parquet can also have them

CS 245 23

Some Statistics We’ll Use

For a relation R,

T(R) = # of tuples in R

S(R) = average size of R’s tuples in bytes

B(R) = # of blocks to hold all of R’s tuples

V(R, A) = # distinct values of attribute A in R

CS 245 24

Example

CS 245 25

R: A: 20 byte string

B: 4 byte integer

C: 8 byte date

D: 5 byte string

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d

Example

CS 245 26

T(R) = 5 S(R) = 37
V(R, A) = 3 V(R, C) = 5
V(R, B) = 1 V(R, D) = 4

R: A: 20 byte string

B: 4 byte integer

C: 8 byte date

D: 5 byte string

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d

Challenge: Intermediate Tables

Keeping stats for tables on disk is relatively
easy, but what about intermediate tables that
appear during a query plan?

Examples:

σp(R)

R ⨝ S

CS 245 27

We already have T(R), S(R), V(R, a), etc,
but how to get these for tuples that pass p?

How many and what types of tuple pass
the join condition?

Should we do (R ⨝ S) ⨝ T or R ⨝ (S ⨝ T) or (R ⨝ T) ⨝ S?

Stat Estimation Methods

Algorithms to estimate subplan stats

An ideal algorithm would have:
1) Accurate estimates of stats
2) Low cost
3) Consistent estimates (e.g. different plans

for a subtree give same stats)

Can’t always get all this!

CS 245 28

Size Estimates for W = R1⨯R2

S(W) =

T(W) =

CS 245 29

Size Estimates for W = R1⨯R2

S(W) =

T(W) =

CS 245 30

S(R1) + S(R2)

T(R1) ´ T(R2)

Size Estimate for W = σA=a(R)

S(W) =

T(W) =

CS 245 31

Size Estimate for W = σA=a(R)

S(W) = S(R)

T(W) =

CS 245 32

Not true if some variable-length fields
are correlated with value of A

Example

CS 245 33

R V(R,A)=3
V(R,B)=1
V(R,C)=5
V(R,D)=4

W = σZ=val(R) T(W) =

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d

Example

CS 245 34

R V(R,A)=3
V(R,B)=1
V(R,C)=5
V(R,D)=4

W = σZ=val(R) T(W) =

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d what is probability this

tuple will be in answer?

Example

CS 245 35

R V(R,A)=3
V(R,B)=1
V(R,C)=5
V(R,D)=4

W = σZ=val(R) T(W) =

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d

T(R)
V(R,Z)

Assumption:

Values in select expression Z=val are
uniformly distributed over all V(R, Z) values

CS 245 36

Alternate Assumption:

Values in select expression Z=val are
uniformly distributed over a domain with
DOM(R, Z) values

CS 245 37

Example

CS 245 38

R V(R,A)=3, DOM(R,A)=10
V(R,B)=1, DOM(R,B)=10
V(R,C)=5, DOM(R,C)=10
V(R,D)=4, DOM(R,D)=10

W = σZ=val(R) T(W) =

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d

Alternate assumption

Example

CS 245 39

R V(R,A)=3, DOM(R,A)=10
V(R,B)=1, DOM(R,B)=10
V(R,C)=5, DOM(R,C)=10
V(R,D)=4, DOM(R,D)=10

W = σZ=val(R) T(W) =

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d

Alternate assumption

what is probability this
tuple will be in answer?

Example

CS 245 40

R V(R,A)=3, DOM(R,A)=10
V(R,B)=1, DOM(R,B)=10
V(R,C)=5, DOM(R,C)=10
V(R,D)=4, DOM(R,D)=10

W = σZ=val(R) T(W) =

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d

T(R)
DOM(R,Z)

Alternate assumption

SC(R, A) = average # records that satisfy
equality condition on R.A

T(R)

V(R,A)

SC(R,A) =

T(R)

DOM(R,A)
CS 245 41

Selection Cardinality

What About W = σz ³ val(R)?

T(W) = ?

CS 245 42

What About W = σz ³ val(R)?

T(W) = ?

Solution 1: T(W) = T(R) / 2

CS 245 43

What About W = σz ³ val(R)?

T(W) = ?

Solution 1: T(W) = T(R) / 2

Solution 2: T(W) = T(R) / 3

CS 245 44

Solution 3: Estimate Fraction of
Values in Range

Example: R

CS 245 45

Z
Min=1 V(R,Z)=10

W = σz ³ 15(R)

Max=20

f = 20-15+1 = 6 (fraction of range)
20-1+1 20

T(W) = f ´ T(R)

Equivalently, if we know values in column:

f = fraction of distinct values ≥ val

T(W) = f ´ T(R)

CS 245 46

Solution 3: Estimate Fraction of
Values in Range

What About More Complex
Expressions?
E.g. estimate selectivity for

SELECT * FROM R
WHERE user_defined_func(a) > 10

CS 245 47

CS 245 48

Size Estimate for W = R1 ⨝ R2

Let X = attributes of R1

Y = attributes of R2

CS 245 49

Case 1: X ∩ Y = ∅:

Same as R1 x R2

R1 A B C R2 A D

CS 245 50

Case 2: W = R1 ⨝ R2, X ∩ Y = A

R1 A B C R2 A D

CS 245 51

Case 2: W = R1 ⨝ R2, X ∩ Y = A

Assumption (“containment of value sets”):
V(R1, A) £ V(R2, A) Þ Every A value in R1 is in R2

V(R2, A) £ V(R1, A) Þ Every A value in R2 is in R1

R1 A B C R2 A D

Take
1 tuple Match

Computing T(W) when
V(R1, A) £ V(R2, A)

CS 245 52

1 tuple matches with T(R2) tuples...
V(R2, A)

so T(W) = T(R1) ´ T(R2)
V(R2, A)

CS 245 53

V(R1, A) £ V(R2, A) ⇒ T(W) = T(R1) ´ T(R2)
V(R2, A)

V(R2, A) £ V(R1, A) ⇒ T(W) = T(R1) ´ T(R2)
V(R1, A)

T(W) = T(R1) ⨯ T(R2)

max(V(R1, A), V(R2, A))

CS 245 54

In General for W = R1 ⨝ R2

Where A is the common attribute set

Values uniformly distributed over domain

R1 A B C R2 A D

This tuple matches T(R2) / DOM(R2, A), so

T(W) = T(R1) T(R2) = T(R1) T(R2)
DOM(R2, A) DOM(R1, A)

Assume these are the sameCS 245 55

Case 2 with Alternate Assumption

Tuple Size after Join

In all cases:

S(W) = S(R1) + S(R2) – S(A)

size of attribute A

CS 245 56

PAB(R)

σA=aÙB=b(R)

R ⨝ S with common attributes A, B, C

Set union, intersection, difference, …

CS 245 57

Using Similar Ideas, Can
Estimate Sizes of:

E.g. W = σA=a(R1) ⨝ R2

Treat as relation U

T(U) = T(R1) / V(R1, A) S(U) = S(R1)

Also need V(U, *) !!

CS 245 58

For Complex Expressions, Need
Intermediate T, S, V Results

To Estimate V

E.g., U = σA=a(R1)

Say R1 has attributes A, B, C, D

V(U, A) =

V(U, B) =

V(U, C) =

V(U, D) =

CS 245 59

R1 V(R1, A)=3
V(R1, B)=1
V(R1, C)=5
V(R1, D)=3

U = σA=a(R1)

A B C D
cat 1 10 10
cat 1 20 20
dog 1 30 10
dog 1 40 30
bat 1 50 10

CS 245 60

Example

R1 V(R1, A)=3
V(R1, B)=1
V(R1, C)=5
V(R1, D)=3

U = σA=a(R1)

A B C D
cat 1 10 10
cat 1 20 20
dog 1 30 10
dog 1 40 30
bat 1 50 10

CS 245 61

Example

V(U, A) = 1 V(U, B) = 1 V(U, C) = T(R1)
V(R1,A)

V(U, D) = somewhere in between…

V(U, A) = 1

V(U, B) = V(R, B)

CS 245 62

Possible Guess in U = σA≥a(R)

For Joins: U = R1(A,B) ⨝ R2(A,C)

V(U, A) = min(V(R1, A), V(R2, A))

V(U, B) = V(R1, B)

V(U, C) = V(R2, C)

[called “preservation of value sets”]

CS 245 63

Example:

Z = R1(A,B) ⨝ R2(B,C) ⨝ R3(C,D)

T(R1) = 1000 V(R1,A)=50 V(R1,B)=100

T(R2) = 2000 V(R2,B)=200 V(R2,C)=300

T(R3) = 3000 V(R3,C)=90 V(R3,D)=500

R1

R2

R3

CS 245 64

T(U) = 1000´2000 V(U,A) = 50
200 V(U,B) = 100

V(U,C) = 300

Partial Result: U = R1 ⨝ R2

CS 245 65

End Result: Z = U ⨝ R3

T(Z) = 1000´2000´3000 V(Z,A) = 50
200´300 V(Z,B) = 100

V(Z,C) = 90
V(Z,D) = 500

CS 245 66

Another Statistic: Histograms

CS 245 67

10 20 30 40

5

10

15

20 number of tuples
in R with A value
in a given range

σA=a(R) = ?

Requires some care to set bucket boundaries

σA>a(R) = ?

Outline

What can we optimize?

Rule-based optimization

Data statistics

Cost models

Cost-based plan selection

CS 245 68

Cost Models

How do we measure a query plan’s cost?

Many possible metrics:
» Number of disk I/Os
» Number of compute cycles
» Combined time metric
» Memory usage
» Bytes sent on network
» …

CS 245 69

We’ll focus on this

Example: Index vs Table Scan

Our query: σp(R) for some predicate p

s = p’s selectivity (fraction tuples passing)

CS 245 70

Table scan:
R has B(R) = T(R)⨯S(R)/b
blocks on disk

Cost: B(R) I/Os

Index search:
Index lookup for p takes L I/Os

We then have to read part of R;
Pr[read block i]

≈ 1 – Pr[no match]records in block

= 1 – (1–s)b / S(R)

Cost: L + (1–(1–s)b/S(R)) B(R)

block size

Example: Index vs Table Scan

Our query: σp(R) for some predicate p

s = p’s selectivity (fraction tuples passing)

Cscan = B(R)

Cindex = L + (1–(1–s)b/S(R)) B(R)

Index good when s is small, or S(R) is large

Index never “much worse” than table scan…
CS 245 71

What If Results Were Clustered?

CS 245 72

Unclustered:
records that
match p are
spread out
uniformly

Clustered:
records that
match p are
close together
in R’s file

What If Results Were Clustered?

We’d need to change our estimate of Cindex:

Cindex = L + s B(R)

CS 245 73

Unclustered:
records that
match p are
spread out
uniformly

Clustered:
records that
match p are
close together
in R’s file

Fraction of R’s blocks read

Less than Cscan
even for bigger s

