Query Optimization

Instructor: Mateil Zaharia
cs245.stanford.edu



https://cs245.stanford.edu/

Query Execution Overview

Query representation
(e.g. SQL)

Loglcal query plan
(e.g. relational algebra)

|
{ |
| 3

PhyS|caI plan
(code/operators to run)




Outline

What can we optimize?
Rule-based optimization
Data statistics

Cost models

Cost-based plan selection



Outline

What can we optimize?
Rule-based optimization
Data statistics

Cost models

Cost-based plan selection



What Can We Optimize?

Operator graph: what operators do we run,
and in what order?

Operator implementation: for operators with
several impls (e.g. join), which one to use?

Access paths: how to read each table?
» Index scan, table scan, C-store projections, ...



Typical Challenge

There is an exponentially large set of
possible query plans

Result: we'll need techniques to prune the
search space and complexity involved



Outline

What can we optimize?
Rule-based optimization
Data statistics

Cost models

Cost-based plan selection



What is a Rule?

Procedure to replace part of the query plan
based on a pattern seen in the plan

Example: When | see for an
expression expr, replace this with



Implementing Rules

Each rule is typically a function that walks
through query plan to search for its pattern

void replaceOrTrue(Plan plan) { Or
for (node in plan.nodes) {
if (node instanceof Or) { r/////\\\\x
if (node.right == Literal(true
pian.r‘eplgce(node, Liteﬁal(ti&e%; expr TRUE
break;
}
// Similar code if node.left == Literal(true)
}
}

}



Implementing Rules

Rules are often grouped into phases

» E.g. simplify Boolean expressions, pushdown
selects, choose join algorithms, etc

Each phase runs rules till they no longer apply

plan = originalPlan;
while (true) {
for (rule in rules) {
rule.apply(plan);

}
if (plan was not changed by any rule) break;

}



Result

Simple rules can work together to optimize
complex query plans (if designed well):

SELECT * FROM users WHERE
(age>=16 && loc==CA) || (age>=16 && loc==NY) || age>=18

I

(age>=16) && (loc==CA || loc==NY) || age>=18

(age>16 && || age>=18



Example Extensible Optimizer

For Monday, you'll read about Spark SQL'’s
Catalyst optimizer

» Written in Scala using its pattern matching
features to simplify writing rules

» >500 contributors worldwide, >1000 types of
expressions, and hundreds of rules

We’'ll also use Spark SQL in assignment 2



apache / spark

<> Code

Branch: master v

'l Pull requests 452 I Projects 0 Ll Insights

Optimizer.scala

. yifeih [SPARK-27514] Skip collapsing windows with empty window expressions

84 contributors !.&iﬁ!'_l pey .za.n--.""f..i = ﬂl...andothers

1722 lines (1569 sloc) 71.7 KB

1

Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.

The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

package org.apache.spark.sql.catalyst.optimizer

import scala.collection.mutable

import org.apache.spark.sql.AnalysisException
import org.apache.spark.sql.catalyst.analysis._

import

import org.apache.spark.sgl.catalyst.expressions._

drmemm et merrm memmeobhea crrmmrls frml o mmbrm Ll et AL RN T R ey s e

® Watch ~

org.apache.spark.sql.catalyst.catalog.{InMemoryCatalog, SessionCatalog}

2,134

% Unstar

Raw

spark / sql / catalyst / src / main / scala / org / apache / spark / sql / catalyst / optimizer /

21,453

Y Fork 18,653

Find file = Copy path

163a6e2 2 days ago

History

[ P



38  abstract class Optimizer(sessionCatalog: SessionCatalog)
39 extends RuleExecutor([LogicalPlan] {
490
59 def defaultBatches: Seq[Batch] = {
60 val operatorOptimizationRuleSet =
61 Seq(
62 // Operator push down
63 PushProjectionThroughUnion,
64 ReorderJoin,
65 EliminateOuterJoin,
66 PushPredicateThroughJoin,
67 PushDownPredicate,
68 PushDownLeftSemiAntiloin,
69 PushLeftSemiLeftAntiThroughJoin,
70 LimitPushDown,
ColumnPruning,

InferFiltersFromConstraints,
// Operator combine

~N NN
w N =

74 CollapseRepartition,

75 CollapseProject,

76 CollapseWindow,

77 CombineFilters,

78 CombinelLimits,

79 CombineUnions,

80 // Constant folding and strength reduction
81 TransposeWindow,

82 NullPropagation,

83 ConstantPropagation,

84 FoldablePropagation,

85 Optimizeln,

86 ConstantFolding,

87 ReorderAssociativeOperator,
88 LikeSimplification,

89 BooleanSimplification,

90 SimplifyConditionals,

91 RemoveDispensableExpressions,
92 SimplifyBinaryComparison,

93 ReplaceNullWithFalseInPredicate,
94 PruneFilters.



Common Rule-Based
Optimizations

Simplifying expressions in select, project, etc
» Boolean algebra, numeric expressions, string
expressions (e.g. regex -> contains), etc

» SQL statements have redundancies because
they're generated by humans who optimized
for readability, or by code

Simplifying relational operator graphs
» Select, project, join, etc: we’ll see some soon!

™\ These relational optimizations have biggest impact



Common Rule-Based
Optimizations

Selecting access paths and operator _ Also very
implementations in simple cases high impact

» Index column predicate = use index
» Small table = use hash join against it

» Aggregation on field with few values = use
iIn-memory hash table

Rules also often used to do type checking
and analysis (easy to write recursively)



Common Relational Rules

Push selects as far down the plan as possible
Recall:

O0,(RD<S)=0,(R) S if p only references R
04(R < S) =R X 0,(S) if q only references S

p/\q(R[X]S)_ ( )NGq(S) fponR,qon S

Idea: reduce # of records early to minimize work

In later ops; enable index access paths



Common Relational Rules

Push projects as far down as possible
Recall:
I1,(0,(R)) = 11 (0,(IL,(R)))  z=thefieldsinp

[,y (R >4S) = Iy (T, (R)) D (T, (S)))

x =fieldsin R,y =in S, z =in both

Idea: don't process fields you'll just throw away



Project Rules Can Backfire!
Example: R hasfieldsA, B, C,D, E

p: A=3 A B="cat’
x: {E}

[1,(0,(R)) vs Hx(Up(H{A,B,E}(R)))



What if R has Indexes?

A=3\ /B=cat

N/

Intersect buckets to get
pointers to matching tuples

In this case, should do 0,(R) first!



Bottom Line

Many possible transformations aren’t always
good for performance

Need more info to make good decisions

» Data statistics: properties about our input or
iIntermediate data to be used in planning

» Cost models: how much time will an operator
take given certain input data statistics?



Outline

What can we optimize?
Rule-based optimization
Data statistics

Cost models

Cost-based plan selection



What Are Data Statistics?

Information about the tuples in a relation that
can be used to estimate size & cost

» Example: # of tuples, average size of tuples,
# distinct values for each attribute, % of null
values for each attribute

Typically maintained by the storage engine as
tuples are added & removed in a relation

» File formats like Parquet can also have them



Some Statistics We’ll Use

For a relation R,
T(R) = # of tuples in R
S(R) = average size of R’s tuples in bytes
B(R) = # of blocks to hold all of R’s tuples
V(R, A) = # distinct values of attribute Ain R



Example

R:

A B|C|D
cat| 1 |10 | a
catf 1 (20| b
dog 1 |30 a
dogl 1 40| c
bat| 1 |50 | d

A: 20 byte string
B: 4 byte integer
C: 8 byte date
D: 5 byte string



Example

R: |A|B|C|D A: 20 byte string
cat| 1119/ B: 4 byte integer
catl 1 |20| b
dog 1 |30| a C: 8 byte date
dog 1140| ¢ | P 5 pyte string
bat| 1 |50| d
T(R)=5 S(R) = 37

V(R,A)=3  V(R,C)=5
V(R,B)=1  V(R,D)=4




Challenge: Intermediate Tables

Keeping stats for tables on disk is relatively
easy, but what about intermediate tables that
appear during a query plan?

Examples:

R) -— We already have T(R), S(R), V(R, a), etc,
Gp( ) but how to get these for tuples that pass p?

R pq S — How many and what types of tuple pass
the join condition?

Shouldwe do (R S)<xiTorRI<xt(SxiT)or (R T) b S?



Stat Estimation Methods

Algorithms to estimate subplan stats

An ideal algorithm would have:
1) Accurate estimates of stats

2) Low cost

3) Consistent estimates (e.g. different plans
for a subtree give same stats)

Can’t always get all this!



Size Estimates for W = R, xR,

S(W) =

T(W) =



Size Estimates for W = R, xR,

S(W) = S(Ry) + S(Ry)

TW) = T(Rq) x T(Ry)



Size Estimate for W = o,_.(R)

S(W) =

T(W) =



Size Estimate for W = o,_.(R)

— . Not true if some variable-length fields
S(W) =3S(R) are correlated with value of A

T(W) =

CS 245 32



Example

R A|B|C|D
cat| 1 |10| a
cat| 1 |20 b
dog 1 |30 | a
dogl 1 40| c
bat 1 |50| d
W = c)-Z=vaI(R) T(W)

R,A)=3
R,B)=1
R,C)=5

R,D)=4



Example

R |A|B|C|D V(R,A)=3
cat| 1 |10| a V(Q,B)=1
catf 1 |20 b V(R,C)=5
dog 1 |30| a B
dog 1 140 o ™ V(RD)=4
batf 1 (50| d what is probability this

tuple will be in answer?

CS 245 34



Example

R |A|B|C|D V(R,A)=3
catl 1 (10| a V(R,B)=1
cat| 1 (20| b V(?,C)=5
dog 1 |30 | a B
dogl 1 |40 ¢ V(R,D)=4
bat| 1 |[50| d

T(R
W=0,gR) TW) = s



Assumption:

Values in select expression Z=val are
uniformly distributed over all V(R, Z) values



Alternate Assumption:

Values in select expression Z=val are

uniformly distributed over a domain with
DOM(R, Z) values



Example
Alternate assumption

R [ale|c|p| V(RA)=3, DOM(R,A)=10
cat| 1|10/ a | V(R,B)=1, DOM(R,B)=10
catl 12910 1 V(R,C)=5, DOM(R,C)=10
dog 1 |30 | a a a
dog 1 40 o| V(RD)=4, DOM(R,D)=10
bat| 1 |50| d




Example

Alternate assumption

DOM(
DOM(
DOM(

DOM(

R,A)=10
R,B)=10
R,C)=10

R,D)=10

what is probabillity this

tuple will be in answer?

R |alB|/c|D| V(RA)=3,
catl 1 (10| a V(R,B)=1,
cat| 1 |20 b V(?,C)=5,
dog 1 |30 a B
dogl 1 [40]| ¢ V(R,D)=4,
bat| 1 |50 d

W = c)-Z=vaI(R) T(W) =



Example
Alternate assumption

R [ale|c|p| V(RA)=3, DOM(R,A)=10
cat| 1|10/ a | V(R,B)=1, DOM(R,B)=10
cat 12910 1 V(R,C)=5, DOM(R,C)=10
dog 1 |30 | a 3 :
dog 1 40| o| V(RD)=4, DOM(R,D)=10
bat| 1 |50| d

T(R)
DOM(R,Z)

W = 02-,a(R) T(W) =



Selection Cardinality

SC(R, A) = average # records that satisfy
equality condition on R.A

( T(R)
V(R,A)

SC(R,A) =<
T(R)
. DOM(R,A)




What About W = o, %, (R)?

T(W)="7?



What About W =0, . ,.,(R)?

T(W) = ?
Solution 1: T(W) = T(R)/ 2



What About W =0, . ,.,(R)?

T(W) = ?
Solution 1: T(W) = T(R)/ 2
Solution 2: T(W) = T(R)/ 3



Solution 3: Estimate Fraction of
Values In Range

Example: R Z
Min=1  V(R,2)=10
I W =0;.15(R)
Max=20

f=20-15+1= 6 (fraction of range)

20-1+1 20

T(W) =1fx T(R)



Solution 3: Estimate Fraction of
Values In Range
Equivalently, if we know values in column:

f = fraction of distinct values = val

T(W) =fx T(R)



What About More Complex
Expressions?

E.g. estimate selectivity for

SELECT * FROM R
WHERE user defined func(a) > 10



L postgres / postgres @Watch~ 267 4 Star 2547  YFork 820

<> Code 'l Pull requests 0 Il Projects 0 “~ Pulse ili Graphs
Tree: 4cbe3abb31 v  postgres / src / backend / optimizer / path / clausesel.c Find file  Copy path
ﬂ bmomijian pgindent run for 9.4 0a78320 on May 6, 2014

5 contributors == a ..

785 lines (733 sloc) 21.6 KB Raw Blame  History [ . [

else if (is_funcclause(clause))

{
/*
* This is not an operator, so we guess at the selectivity. THIS IS A
* HACK TO GET V4 OUT THE DOOR. FUNCS SHOULD BE ABLE TO HAVE
* SELECTIVITIES THEMSELVES. -- JMH 7/9/92
*/
sl = (Selectivity) ©.3333333;
}

CS 245 48



Size Estimate for W =R, DM R,

Let X = attributes of R,

Y = attributes of R,

Case1: XNY=0:

Same as R; X R,



Case2:W=R; <R, XNY=A

R, | A|B|C R, | A/ D




Case2:W=R; <R, XNY=A

R, | A|B|C R, | A/ D

Assumption (“containment of value sets”):

V(R{,A) <V(R,,A) = EveryAvaluein R;isin R,
V(R,, A) <V(R4,A) = EveryAvaluein R,isin R,



Computing T(W) when
V(R1, A) < V(Ry A)

R, | A |B |C R, |A| D

-—_—

1T?uk§e <A> Match

1 tuple matches with  T(R,) tuples...
V(Rz, A)
so T(W) = T(Ry) x T(R,)
V(Rz, A)




V(R,A) <V(R,,A) = T(W) = T(R)) x T(R,)

V(R2, A)

V(R,, A) <V(R{,A) = T(W) = T(R)) x T(R,)

V(Ry, A)



In General for W =R, X R,

T(W) = T(Ry) x T(Ry)
max(V(R, A), V(R,, A))

Where A Is the common attribute set



Case 2 with Alternate Assumption

Values uniformly distributed over domain

R, |A| B | C R, LAl D
- B

This tuple matches T(R,) / DOM(R,, A), so

T(W)=T(Ry) T(Ry = T(Rq) T(Ry)
DOM(R,, A) DOM(R,, A)
™~ 7

Assume these are the same




Tuple Size after Join

In all cases:

S(W) = S(Ry) + S(Ry) — S(A)
™~
size of attribute A



Using Similar Ideas, Can
Estimate Sizes of:

[Mas(R)

Op=arB=b(R)

R <1 S with common attributes A, B, C

Set union, intersection, difference, ...



For Complex Expressions, Need
Intermediate T, S, V Results

E.g. W= 0al(R)) ™M R,

\ )

Y
Treat as relation U

T(U) =T(R) /V(Ry, A) S(U) = S(Ry)

Also need V(U, *) !



To Estimate V

E.g., U=0,-4(Ry)
Say R, has attributes A, B, C, D
V(U, A) =
V(U, B) =
V(U, C) =
V(U, D) =



Example

A|B|C|D
cat| 1 {1010
cat| 1 [2020
dog 1 |{30(10
dog 1 {4030
bat| 1 |50 10




Example

R, |AlB[c|D V(R,, A)=3
cat| 1 |10]10 V(?w B)=1
cat| 1 20|20
dog 1 |30/10 V(Ry, C)=5
dogl 1 |40]30 V(Ry, D)=3
bat| 1 |50]10

U = O-A=a(R1)

VU, A)=1 V(U,B)=1 V(U,C)= T(R1)

\ 7 VR1A)

V(U, D) = somewhere in between...



Possible Guess in U = 0,..(R)

V(U, A) = 1
V(U, B) = V(R, B)



For Joins: U = R,(A,B) < R,(A,C)

V(U, A) = min(V(R,, A), V(R,, A))
V(U, B) = V(R,, B)
V(U, C) = V(R,, C)

[called “preservation of value sets’]



Example:

Z = R,(A,B) 1 R,(B,C) <! R4(C,D)

Ry | T(Ry) =1000 V(R,A)=50 V(R,B)=100

R, | T(R,)=2000 V(R,,B)=200 V(R,,C)=300

Rs | T(Rs)=3000 V(R;,C)=90 V(R,,D)=500




Partial Result: U =R, < R,

T(U) = 1000x2000  V(U,A) = 50
200 V(U,B) = 100
V(U,C) = 300




End Result: Z=U X R,

T(Z) = 1000x2000x3000  V(Z,A) = 50
200x300 V(Z,B) = 100

V(Z,C) = 90
V(Z,D) = 500



Another Statistic: Histograms

10

15

20

number of tuples
In R with A value
In a given range

Op-a(R) =7

10

20

30

40

Op>a(R) =7

Requires some care to set bucket boundaries

CS 245

67



Outline

What can we optimize?
Rule-based optimization
Data statistics

Cost models

Cost-based plan selection



Cost Models

How do we measure a query plan’s cost?

Many possible metrics:

| » Number of disk 1/Os |+— We'll focus on this
» Number of compute cycles
» Combined time metric
» Memory usage

» Bytes sent on network
» ...

CS 245 69



Example: Index vs Table Scan

Our query: o,(R) for some predicate p
s = p’'s selectivity (fraction tuples passing)

Table scan:  block Sife Index search:
R has B(R) = T(R)xS(R)/b Index lookup for p takes L I/Os

blocks on disk We then have to read part of R;

Cost: B(R) I/Os Prlread block i]
~1— Pr[no match]records in block
=1 — (1_S)b/S(R)

Cost: L + (1—(1-s)P/SR)) B(R)



Example: Index vs Table Scan

Our query: o,(R) for some predicate p

s = p’'s selectivity (fraction tuples passing)
Cscan = B(R)
Cingex = L + (1—(1-s)*>R)) B(R)

Index good when s is small, or S(R) is large

Index never “much worse” than table scan...

CS 245 71



What If Results Were Clustered?

Unclustered:
records that
match p are
spread out
uniformly

Clustered:
records that
match p are
close together
in R’s file



What If Results Were Clustered?

Unclustered: Clustered:
records that records that
match p are match p are
spread out close together
uniformly in R’s file

We’'d need to change our estimate of C, 4.,

Cingex = L + s B(R) Less than C...,
’ ) ‘ even for bigger s

Fraction of R’s blocks read

CS 245 73



