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Query Execution Overview

Query representation 
(e.g. SQL)

Logical query plan
(e.g. relational algebra)

Optimized logical plan

Physical plan
(code/operators to run)
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Outline

What can we optimize?

Rule-based optimization

Data statistics

Cost models

Cost-based plan selection
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What Can We Optimize?

Operator graph: what operators do we run, 
and in what order?

Operator implementation: for operators with 
several impls (e.g. join), which one to use?

Access paths: how to read each table?
» Index scan, table scan, C-store projections, …
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Typical Challenge

There is an exponentially large set of 
possible query plans

Result: we’ll need techniques to prune the 
search space and complexity involved

Access paths
for table 1

Access paths
for table 2

Algorithms
for join 1

Algorithms
for join 2⨯ ⨯ ⨯ ⨯ …
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What is a Rule?

Procedure to replace part of the query plan 
based on a pattern seen in the plan

Example: When I see expr OR TRUE for an 
expression expr, replace this with TRUE
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Implementing Rules

Each rule is typically a function that walks 
through query plan to search for its pattern

void replaceOrTrue(Plan plan) {
for (node in plan.nodes) {
if (node instanceof Or) {
if (node.right == Literal(true)) {
plan.replace(node, Literal(true));
break;

}
// Similar code if node.left == Literal(true)

}
}

}

Or

expr TRUE

node

node.left node.right
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Implementing Rules

Rules are often grouped into phases
» E.g. simplify Boolean expressions, pushdown 

selects, choose join algorithms, etc

Each phase runs rules till they no longer apply
plan = originalPlan;
while (true) {
for (rule in rules) {
rule.apply(plan);

}
if (plan was not changed by any rule) break;

}
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Result

Simple rules can work together to optimize 
complex query plans (if designed well):

SELECT * FROM users WHERE
(age>=16 && loc==CA) || (age>=16 && loc==NY) || age>=18

(age>=16) && (loc==CA || loc==NY) || age>=18

(age>16 && (loc IN (CA, NY)) || age>=18

age>=18 || (age>16 && (loc IN (CA, NY))
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Example Extensible Optimizer

For Monday, you’ll read about Spark SQL’s 
Catalyst optimizer
» Written in Scala using its pattern matching 

features to simplify writing rules
» >500 contributors worldwide, >1000 types of 

expressions, and hundreds of rules

We’ll also use Spark SQL in assignment 2
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Common Rule-Based 
Optimizations
Simplifying expressions in select, project, etc
» Boolean algebra, numeric expressions, string 

expressions (e.g. regex -> contains), etc
» SQL statements have redundancies because 

they’re generated by humans who optimized 
for readability, or by code 

Simplifying relational operator graphs
» Select, project, join, etc: we’ll see some soon!

These relational optimizations have biggest impact
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Common Rule-Based 
Optimizations
Selecting access paths and operator
implementations in simple cases
» Index column predicate ⇒ use index
» Small table ⇒ use hash join against it
» Aggregation on field with few values ⇒ use 

in-memory hash table

Rules also often used to do type checking 
and analysis (easy to write recursively)

Also very
high impact
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Common Relational Rules

Push selects as far down the plan as possible

Recall:

σp(R ⨝ S) = σp(R) ⨝ S if p only references R

σq(R ⨝ S) = R ⨝ σq(S) if q only references S

σp∧q(R ⨝ S) = σp(R) ⨝ σq(S) if p on R, q on S

Idea: reduce # of records early to minimize work 
in later ops; enable index access pathsCS 245 17



Common Relational Rules

Push projects as far down as possible

Recall:

Px(σp(R)) = Px(σp(Px∪z(R))) z = the fields in p

Px∪y(R ⨝ S) = Px∪y ((Px∪z (R)) ⨝ (Py∪z (S))) 

Idea: don’t process fields you’ll just throw away

x = fields in R, y = in S, z = in both

CS 245 18



Project Rules Can Backfire!

Example: R has fields A, B, C, D, E
p: A=3 ∧ B=“cat”
x: {E}

Px(σp(R))   vs Px(σp(P{A,B,E}(R)))
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What if R has Indexes?

A = 3 B = “cat”

Intersect buckets to get
pointers to matching tuples

In this case, should do σp(R) first!
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Bottom Line

Many possible transformations aren’t always 
good for performance

Need more info to make good decisions
» Data statistics: properties about our input or 

intermediate data to be used in planning
» Cost models: how much time will an operator 

take given certain input data statistics?

CS 245 21



Outline

What can we optimize?

Rule-based optimization

Data statistics

Cost models

Cost-based plan selection
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What Are Data Statistics?

Information about the tuples in a relation that 
can be used to estimate size & cost
» Example: # of tuples, average size of tuples, 

# distinct values for each attribute, % of null 
values for each attribute

Typically maintained by the storage engine as 
tuples are added & removed in a relation
» File formats like Parquet can also have them
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Some Statistics We’ll Use

For a relation R,

T(R) = # of tuples in R

S(R) = average size of R’s tuples in bytes

B(R) = # of blocks to hold all of R’s tuples

V(R, A) = # distinct values of attribute A in R
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Example
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R: A: 20 byte string

B: 4 byte integer

C: 8 byte date

D: 5 byte string

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d



Example
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T(R) = 5     S(R) = 37
V(R, A) = 3 V(R, C) = 5
V(R, B) = 1 V(R, D) = 4

R: A: 20 byte string

B: 4 byte integer

C: 8 byte date

D: 5 byte string

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d



Challenge: Intermediate Tables

Keeping stats for tables on disk is relatively 
easy, but what about intermediate tables that 
appear during a query plan?

Examples:

σp(R)

R ⨝ S
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We already have T(R), S(R), V(R, a), etc,
but how to get these for tuples that pass p?

How many and what types of tuple pass
the join condition?

Should we do (R ⨝ S) ⨝ T or R ⨝ (S ⨝ T) or (R ⨝ T) ⨝ S? 



Stat Estimation Methods

Algorithms to estimate subplan stats

An ideal algorithm would have:
1) Accurate estimates of stats
2) Low cost
3) Consistent estimates (e.g. different plans 

for a subtree give same stats)

Can’t always get all this!
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Size Estimates for W = R1⨯R2

S(W) =

T(W) =
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Size Estimates for W = R1⨯R2

S(W) =

T(W) =
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S(R1) + S(R2)

T(R1) ´ T(R2)



Size Estimate for W = σA=a(R)

S(W) =

T(W) = 

CS 245 31



Size Estimate for W = σA=a(R)

S(W) = S(R)

T(W) = 

CS 245 32

Not true if some variable-length fields
are correlated with value of A



Example
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R V(R,A)=3
V(R,B)=1
V(R,C)=5
V(R,D)=4

W = σZ=val(R)    T(W) = 

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d



Example
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R V(R,A)=3
V(R,B)=1
V(R,C)=5
V(R,D)=4

W = σZ=val(R)    T(W) = 

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d what is probability this

tuple will be in answer?



Example
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R V(R,A)=3
V(R,B)=1
V(R,C)=5
V(R,D)=4

W = σZ=val(R)    T(W) = 

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d

T(R)
V(R,Z)



Assumption:

Values in select expression Z=val are 
uniformly distributed over all V(R, Z) values
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Alternate Assumption:

Values in select expression Z=val are 
uniformly distributed over a domain with 
DOM(R, Z) values
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Example
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R V(R,A)=3, DOM(R,A)=10
V(R,B)=1, DOM(R,B)=10
V(R,C)=5, DOM(R,C)=10
V(R,D)=4, DOM(R,D)=10

W = σZ=val(R)    T(W) = 

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d

Alternate assumption



Example
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R V(R,A)=3, DOM(R,A)=10
V(R,B)=1, DOM(R,B)=10
V(R,C)=5, DOM(R,C)=10
V(R,D)=4, DOM(R,D)=10

W = σZ=val(R)    T(W) = 

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d

Alternate assumption

what is probability this
tuple will be in answer?



Example
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R V(R,A)=3, DOM(R,A)=10
V(R,B)=1, DOM(R,B)=10
V(R,C)=5, DOM(R,C)=10
V(R,D)=4, DOM(R,D)=10

W = σZ=val(R)    T(W) = 

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d

T(R)
DOM(R,Z)

Alternate assumption



SC(R, A) = average # records that satisfy
equality condition on R.A

T(R)

V(R,A)

SC(R,A) =

T(R)

DOM(R,A)
CS 245 41

Selection Cardinality



What About W = σz ³ val(R)?

T(W) = ?
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What About W = σz ³ val(R)?

T(W) = ?

Solution 1: T(W) = T(R) / 2
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What About W = σz ³ val(R)?

T(W) = ?

Solution 1: T(W) = T(R) / 2

Solution 2: T(W) = T(R) / 3
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Solution 3: Estimate Fraction of 
Values in Range

Example:   R
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Z
Min=1      V(R,Z)=10

W = σz ³ 15(R)

Max=20

f = 20-15+1 = 6 (fraction of range)
20-1+1     20

T(W) = f ´ T(R)



Equivalently, if we know values in column:

f = fraction of distinct values ≥ val

T(W)  = f ´ T(R)
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Solution 3: Estimate Fraction of 
Values in Range



What About More Complex 
Expressions?
E.g. estimate selectivity for

SELECT * FROM R
WHERE user_defined_func(a) > 10
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Size Estimate for W = R1 ⨝ R2

Let X = attributes of R1

Y = attributes of R2
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Case 1: X ∩ Y = ∅:

Same as R1 x R2



R1   A     B     C     R2 A D

CS 245 50

Case 2: W = R1 ⨝ R2, X ∩ Y = A



R1   A     B     C     R2 A D
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Case 2: W = R1 ⨝ R2, X ∩ Y = A

Assumption (“containment of value sets”):
V(R1, A)  £ V(R2, A)  Þ Every A value in R1 is in R2

V(R2, A)  £ V(R1, A)  Þ Every A value in R2 is in R1



R1 A    B     C     R2 A D

Take 
1 tuple Match

Computing T(W) when
V(R1, A) £ V(R2, A)
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1 tuple matches with   T(R2) tuples...
V(R2, A) 

so    T(W)  =  T(R1) ´ T(R2)
V(R2, A) 
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V(R1, A) £ V(R2, A)  ⇒ T(W) =  T(R1) ´ T(R2)
V(R2, A) 

V(R2, A) £ V(R1, A)  ⇒ T(W) =  T(R1) ´ T(R2)
V(R1, A) 



T(W)  =    T(R1) ⨯ T(R2)

max(V(R1, A), V(R2, A))
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In General for W = R1 ⨝ R2

Where A is the common attribute set



Values uniformly distributed over domain

R1 A B C R2 A     D

This tuple matches T(R2) / DOM(R2, A), so

T(W) =  T(R1) T(R2)   =  T(R1) T(R2) 
DOM(R2, A)      DOM(R1, A) 

Assume these are the sameCS 245 55

Case 2 with Alternate Assumption



Tuple Size after Join

In all cases: 

S(W) = S(R1) + S(R2) – S(A)

size of attribute A
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PAB(R)

σA=aÙB=b(R) 

R ⨝ S  with common attributes A, B, C

Set union, intersection, difference, …
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Using Similar Ideas, Can 
Estimate Sizes of:



E.g.  W =  σA=a(R1)  ⨝ R2

Treat as relation U

T(U) = T(R1) / V(R1, A)      S(U) = S(R1)

Also need V(U, *) !! 
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For Complex Expressions, Need 
Intermediate T, S, V Results



To Estimate V

E.g., U = σA=a(R1)

Say R1 has attributes A, B, C, D

V(U, A) =

V(U, B) =

V(U, C) =

V(U, D) =
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R1 V(R1, A)=3
V(R1, B)=1
V(R1, C)=5
V(R1, D)=3

U = σA=a(R1)

A B C D
cat 1 10 10
cat 1 20 20
dog 1 30 10
dog 1 40 30
bat 1 50 10
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Example



R1 V(R1, A)=3
V(R1, B)=1
V(R1, C)=5
V(R1, D)=3

U = σA=a(R1)

A B C D
cat 1 10 10
cat 1 20 20
dog 1 30 10
dog 1 40 30
bat 1 50 10
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Example

V(U, A) = 1     V(U, B) = 1      V(U, C) =   T(R1)
V(R1,A)

V(U, D) = somewhere in between…



V(U, A) = 1

V(U, B) = V(R, B)
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Possible Guess in U = σA≥a(R)



For Joins: U = R1(A,B) ⨝ R2(A,C) 

V(U, A) = min(V(R1, A), V(R2, A))

V(U, B) = V(R1, B)

V(U, C) = V(R2, C)

[called “preservation of value sets”]
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Example:

Z = R1(A,B) ⨝ R2(B,C) ⨝ R3(C,D)

T(R1) = 1000  V(R1,A)=50   V(R1,B)=100

T(R2) = 2000  V(R2,B)=200 V(R2,C)=300

T(R3) = 3000  V(R3,C)=90   V(R3,D)=500

R1

R2

R3
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T(U) = 1000´2000      V(U,A) = 50
200 V(U,B) = 100

V(U,C) = 300

Partial Result: U = R1 ⨝ R2
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End Result: Z = U ⨝ R3

T(Z) = 1000´2000´3000 V(Z,A) = 50
200´300 V(Z,B) = 100

V(Z,C) = 90
V(Z,D) = 500
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Another Statistic: Histograms
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10 20 30 40

5

10

15

20 number of tuples
in R with A value
in a given range

σA=a(R) = ?

Requires some care to set bucket boundaries

σA>a(R) = ?



Outline

What can we optimize?

Rule-based optimization

Data statistics

Cost models

Cost-based plan selection
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Cost Models

How do we measure a query plan’s cost?

Many possible metrics:
» Number of disk I/Os
» Number of compute cycles
» Combined time metric
» Memory usage
» Bytes sent on network
» …
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We’ll focus on this



Example: Index vs Table Scan

Our query: σp(R) for some predicate p

s = p’s selectivity (fraction tuples passing)
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Table scan:
R has B(R) = T(R)⨯S(R)/b
blocks on disk

Cost: B(R) I/Os

Index search:
Index lookup for p takes L I/Os

We then have to read part of R;
Pr[read block i]

≈ 1 – Pr[no match]records in block

= 1 – (1–s)b / S(R)

Cost: L + (1–(1–s)b/S(R)) B(R)

block size



Example: Index vs Table Scan

Our query: σp(R) for some predicate p

s = p’s selectivity (fraction tuples passing)

Cscan = B(R)

Cindex = L + (1–(1–s)b/S(R)) B(R)

Index good when s is small, or S(R) is large

Index never “much worse” than table scan…
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What If Results Were Clustered?
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Unclustered: 
records that 
match p are 
spread out 
uniformly

Clustered: 
records that 
match p are 
close together 
in R’s file



What If Results Were Clustered?

We’d need to change our estimate of Cindex:

Cindex = L + s B(R)
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Unclustered: 
records that 
match p are 
spread out 
uniformly

Clustered: 
records that 
match p are 
close together 
in R’s file

Fraction of R’s blocks read

Less than Cscan
even for bigger s


