
Query Optimization 2

Instructor: Matei Zaharia
cs245.stanford.edu

https://cs245.stanford.edu/

Outline

What can we optimize?

Rule-based optimization

Data statistics

Cost models

Cost-based plan selection

Spark SQL
CS 245 2

Outline

What can we optimize?

Rule-based optimization

Data statistics

Cost models

Cost-based plan selection

Spark SQL
CS 245 3

Recall From Last Time

Cost models attempt to predict a cost metric
for each operator (e.g. CPU cycles, I/Os, etc)

Most common metric: # of disk I/Os

CS 245 4

Example: Index vs Table Scan

Our query: σp(R) for some predicate p

s = p’s selectivity (fraction tuples passing)

CS 245 5

Table scan:
R has B(R) = T(R)⨯S(R)/b
blocks on disk

Cost: B(R) I/Os

Index search:
Index lookup for p takes L I/Os

We then have to read part of R;
Pr[read block i]

≈ 1 – Pr[no match]records in block

= 1 – (1–s)b / S(R)

Cost: L + (1–(1–s)b/S(R)) B(R)

block size

What If Results Were Clustered?

We’d need to change our estimate of Cindex:

Cindex = L + s B(R)

CS 245 6

Unclustered:
records that
match p are
spread out
uniformly

Clustered:
records that
match p are
close together
in R’s file

Fraction of R’s blocks read

Less than Cindex for
unclustered data

Join Operators

Join orders and algorithms are often the
choices that affect performance the most

For a multi-way join R ⨝ S ⨝ T ⨝ …, each
join is selective and order matters a lot
» Try to eliminate lots of records early

Even for one join R ⨝ S, algorithm matters

CS 245 7

Example
SELECT order.date, product.price, customer.name
FROM order, product, customer
WHERE order.product_id = product.product_id
AND order.cust_id = customer.cust_id
AND product.type = “car”
AND customer.country = “US”

CS 245 8

⨝
order product

(type=car)

customer
(country=US)

⨝

⨝
order customer

(country=US)

product
(type=car)

⨝Plan 1: Plan 2:

join conditions

selection predicates

When is each plan better?

Common Join Algorithms

Iteration (nested loops) join

Merge join

Join with index

Hash join

CS 245 9

Iteration Join
for each rÎR1:

for each sÎR2:
if r.C == s.C then output (r, s)

I/Os: one scan of R1 and T(R1) scans of R2, so
cost = B(R1) + T(R1) B(R2) reads

Improvement: read M blocks of R1 in RAM at
a time then read R2: B(R1) + B(R1) B(R2) / M

CS 245 10

Note: cost of writes is always B(R1 ⨝ R2)

Merge Join

if R1 and R2 not sorted by C then sort them
i, j = 1
while i £ T(R1) && j £ T(R2):

if R1[i].C = R2[j].C then outputTuples
else if R1[i].C > R2[j].C then j += 1
else if R1[i].C < R2[j].C then i += 1

CS 245 11

Merge Join

procedure outputTuples:
while R1[i].C == R2[j].C && i £ T(R1):

jj = j
while R1[i].C == R2[jj].C && jj £ T(R2):

output (R1[i], R2[jj])
jj += 1

i += i+1

CS 245 12

i R1[i].C R2[j].C j
1 10 5 1
2 20 20 2
3 20 20 3
4 30 30 4
5 40 30 5

50 6
52 7

Example

CS 245 13

Cost of Merge Join

If R1 and R2 already sorted by C, then

cost = B(R1) + B(R2) reads

CS 245 14

(+ write cost of B(R1 ⨝ R2))

Cost of Merge Join

If Ri is not sorted, can sort it in 4 B(Ri) I/Os:
» Read runs of tuples into memory, sort
» Write each sorted run to disk
» Read from all sorted runs to merge
» Write out results

CS 245 15

Join with Index
for each rÎR1:

list = index_lookup(R2, C, r.C)
for each sÎlist:

output (r, s)

Read I/Os: 1 scan of R1, T(R1) index lookups
on R2, and T(R1) data lookups

cost = B(R1) + T(R1) (Lindex + Ldata)

CS 245 16

Can be less when R1 is sorted/clustered by C!

Hash Join (R2 Fits in RAM)
hash = load R2 into RAM and hash by C
for each rÎR1:

list = hash_lookup(hash, r.C)
for each sÎlist:

output (r, s)

Read I/Os: B(R1) + B(R2)

CS 245 17

Hash Join on Disk

Can be done by hashing both tables to a
common set of buckets on disk
» Similar to merge sort: 4 (B(R1) + B(R2))

Trick: hash only (key, pointer to record) pairs
» Can then sort the pointers to records that

match and fetch them near-sequentially

CS 245 18

Other Concerns

Join selectivity may affect how many records
we need to fetch from each relation
» If very selective, may prefer methods that join

pointers or do index lookups

CS 245 19

Summary

Join algorithms can have different
performance in different situations

In general, the following are used:
» Index join if an index exists
» Merge join if at least one table is sorted
» Hash join if both tables unsorted

CS 245 20

Outline

What can we optimize?

Rule-based optimization

Data statistics

Cost models

Cost-based plan selection

Spark SQL
CS 245 21

Complete CBO Process

Generate and compare possible query plans

Query

Generate Plans

Prune x x

Estimate Cost Costs

Select
CS 245 22

Pick Min

How to Generate Plans?

Simplest way: recursive search of the options
for each planning choice

CS 245 23

Access paths
for table 1

Access paths
for table 2

Algorithms
for join 1

Algorithms
for join 2⨯ ⨯ ⨯ ⨯ …

How to Generate Plans?

Can limit search space: e.g. many DBMSes
only consider “left-deep” joins

CS 245 24

Often interacts well with conventions for specifying join inputs in
asymmetric join algorithms (e.g. assume right argument has index)

How to Generate Plans?

Can prioritize searching through the most
impactful decisions first
» E.g. join order is one of the most impactful

CS 245 25

How to Prune Plans?

While computing the cost of a plan, throw it
away if it is worse than best so far

Start with a greedy algorithm to find an “OK”
initial plan that will allow lots of pruning

CS 245 26

Memoization and Dynamic
Programming
During a search through plans, many
subplans will appear repeatedly

Remember cost estimates and statistics
(T(R), V(R, A), etc) for those: “memoization”

Can pick an order of subproblems to make it
easy to reuse results (dynamic programming)

CS 245 27

Resource Cost of CBO

It’s possible for cost-based optimization itself
to take longer than running the query!

Need to design optimizer to not take too long
» That’s why we have shortcuts in stats, etc

Luckily, a few “big” decisions drive most of
the query execution time (e.g. join order)

CS 245 28

Outline

What can we optimize?

Rule-based optimization

Data statistics

Cost models

Cost-based plan selection

Spark SQL
CS 245 29

Background

2004: MapReduce published, enables writing
large scale data apps on commodity clusters
» Cheap but unreliable “consumer” machines,

so system emphasizes fault tolerance
» Focus on C++/Java programmers

CS 245 30

Background

2006: Apache Hadoop project formed as an
open source MapReduce + distributed FS
» Started in Nutch open source search engine
» Soon adopted by Yahoo & Facebook

2006: Amazon EC2 service launched as the
newest attempt at “utility computing”
CS 245 31

Background

2007: Facebook starts Hive (later Apache
Hive) for SQL on Hadoop
» Other SQL-on-MapReduces existed too
» First steps toward “data lake” architecture

CS 245 32

Background

2006-2012: Many other cluster programming
frameworks proposed to bring MR’s benefits
to other apps

CS 245 33

Pregel Dremel Dryad
Impala

Background

2010: Spark engine released, built around
MapReduce + in-memory computing
» Motivation: interactive queries + iterative

algorithms such as graph analytics

Spark then moves to be a general (“unified”)
engine, covering existing ones

CS 245 34

Code Size Comparison (2013)

0

20000

40000

60000

80000

100000

120000

140000

Hadoop
MapReduce

Impala
(SQL)

Storm
(Streaming)

Giraph
(Graph)

Spark

non-test, non-example source lines

Shark

GraphX
Streaming

Background

2012: Shark starts as a port of Hive on Spark

2014: Spark SQL starts as a SQL engine built
directly on Spark (but interoperable w/ Hive)
» Also adds two new features: DataFrames for

integrating relational ops in complex programs
and extensible optimizer

CS 245 36

Original Spark API

Resilient Distributed Datasets (RDDs)
» Immutable collections of objects that can be

stored in memory or disk across a cluster
» Built with parallel transformations (map, filter, …)
» Automatically rebuilt on failure

Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://...”)
errors = lines.filter(s => s.startswith(“ERROR”))
messages = errors.map(s => s.split(‘\t’)(2))
messages.cache()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

messages.filter(s => s.contains(“foo”)).count()
messages.filter(s => s.contains(“bar”)).count()

. . .

tasks

results
Cache 1

Cache 2

Cache 3

Base RDDTransformed RDD

Action

Result: full-text search of Wikipedia in 1 sec
(vs 40 s for on-disk data)

Example: Log Mining

Challenges with Spark’s
Functional API
Looks high-level, but hides many semantics
of computation from engine
» Functions passed in are arbitrary blocks of

code
» Data stored is arbitrary Java/Python objects

Users can mix APIs in suboptimal ways

Example Problem
pairs = data.map(word => (word, 1))

groups = pairs.groupByKey()

groups.map((k, vs) => (k, vs.sum))

Materializes all groups
as lists of integers

Then promptly
aggregates them

Challenge: Data Representation
Java objects often many times larger than data

class User(name: String, friends: Array[Int])
User(“Bobby”, Array(1, 2))

User 0x… 0x…

String

3

0

1 2

Bobby

5 0x…

int[]

char[] 5

Spark SQL & DataFrames
Efficient library for working with structured data
» 2 interfaces: SQL for data analysts and external

apps, DataFrames for complex programs
» Optimized computation and storage underneath

Spark SQL Architecture

Logical
Plan

Physical
Plan

Catalog

Optimizer
RDDs

…

Data
Source

API

SQL Data
Frames

Code

Generator

DataFrame API
DataFrames hold rows with a known schema
and offer relational operations through a DSL

c = HiveContext()
users = c.sql(“select * from users”)

ma_users = users[users.state == “MA”]

ma_users.count()

ma_users.groupBy(“name”).avg(“age”)

ma_users.map(lambda row: row.user.toUpper())

Expression AST

API Details

Based on data frame concept in R, Python
» Spark is the first to make this declarative

Integrated with the rest of Spark
» ML library takes DataFrames as input/output
» Easily convert RDDs ↔ DataFrames

Google trends for “data frame”

What DataFrames Enable
1. Compact binary representation

• Columnar, compressed cache; rows for
processing

2. Optimization across operators (join
reordering, predicate pushdown, etc)

3. Runtime code generation

Performance

0 2 4 6 8 10

RDD Scala

RDD Python

DataFrame Scala

DataFrame Python

DataFrame R

DataFrame SQL

Time for aggregation benchmark (s)

Performance

0 2 4 6 8 10

RDD Scala

RDD Python

DataFrame Scala

DataFrame Python

DataFrame R

DataFrame SQL

Time for aggregation benchmark (s)

Data Sources
Uniform way to access structured data
» Apps can migrate across Hive, Cassandra,

JSON, Parquet, …
» Rich semantics allows query pushdown into

data sources

Spark
SQL

users[users.age > 20]

select * from users

Examples
JSON:

JDBC:

Together:

select user.id, text from tweets

{
“text”: “hi”,
“user”: {
“name”: “bob”,
“id”: 15 }

}

tweets.json
select age from users where lang = “en”

select t.text, u.age
from tweets t, users u
where t.user.id = u.id
and u.lang = “en” Spark

SQL
{JSON}

select id, age from
users where lang=“en”

Extensible Optimizer

Uses Scala pattern matching (see demo!)

CS 245 51

Which Spark Components
Do People Use?

58%

58%

62%

69%

MLlib + GraphX

Spark Streaming

DataFrames

Spark SQL

75% of users use 2 or more components
(2015 survey)

CS 245 52

Which Languages Are Used?

84%

38% 38%

71%

31%

58%

18%

2014 Languages Used 2015 Languages Used

CS 245 53

Extensions to Spark SQL

Tens of data sources using the pushdown API

Interval queries on genomic data

Geospatial package (Magellan)

Approximate queries & other research

CS 245 54

