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Recall From Last Time

Cost models attempt to predict a cost metric 
for each operator (e.g. CPU cycles, I/Os, etc)

Most common metric: # of disk I/Os
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Example: Index vs Table Scan

Our query: σp(R) for some predicate p

s = p’s selectivity (fraction tuples passing)
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Table scan:
R has B(R) = T(R)⨯S(R)/b
blocks on disk

Cost: B(R) I/Os

Index search:
Index lookup for p takes L I/Os

We then have to read part of R;
Pr[read block i]

≈ 1 – Pr[no match]records in block

= 1 – (1–s)b / S(R)

Cost: L + (1–(1–s)b/S(R)) B(R)

block size



What If Results Were Clustered?

We’d need to change our estimate of Cindex:

Cindex = L + s B(R)
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Unclustered: 
records that 
match p are 
spread out 
uniformly

Clustered: 
records that 
match p are 
close together 
in R’s file

Fraction of R’s blocks read

Less than Cindex for 
unclustered data



Join Operators

Join orders and algorithms are often the 
choices that affect performance the most

For a multi-way join R ⨝ S ⨝ T ⨝ …, each 
join is selective and order matters a lot
» Try to eliminate lots of records early

Even for one join R ⨝ S, algorithm matters
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Example
SELECT order.date, product.price, customer.name
FROM order, product, customer
WHERE order.product_id = product.product_id
AND order.cust_id = customer.cust_id
AND product.type = “car”
AND customer.country = “US”
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⨝
order product

(type=car)

customer
(country=US)

⨝

⨝
order customer

(country=US)

product
(type=car)

⨝Plan 1: Plan 2:

join conditions

selection predicates

When is each plan better?



Common Join Algorithms

Iteration (nested loops) join

Merge join

Join with index

Hash join
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Iteration Join
for each rÎR1:

for each sÎR2:
if r.C == s.C then output (r, s)

I/Os: one scan of R1 and T(R1) scans of R2, so 
cost = B(R1) + T(R1) B(R2) reads

Improvement: read M blocks of R1 in RAM at 
a time then read R2: B(R1) + B(R1) B(R2) / M

CS 245 10

Note: cost of writes is always B(R1 ⨝ R2)



Merge Join

if R1 and R2 not sorted by C then sort them
i, j = 1
while i £ T(R1) && j £ T(R2):

if R1[i].C = R2[j].C then outputTuples
else if R1[i].C > R2[j].C then j += 1
else if R1[i].C < R2[j].C then i += 1
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Merge Join

procedure outputTuples:
while R1[i].C == R2[j].C && i £ T(R1):

jj = j
while R1[i].C == R2[jj].C && jj £ T(R2):

output (R1[i], R2[jj]) 
jj += 1

i += i+1
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i R1[i].C R2[j].C j
1 10 5 1
2 20 20 2
3 20 20 3
4 30 30 4
5 40 30 5

50 6
52 7

Example
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Cost of Merge Join

If R1 and R2 already sorted by C, then

cost = B(R1) + B(R2) reads
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(+ write cost of B(R1 ⨝ R2))



Cost of Merge Join

If Ri is not sorted, can sort it in 4 B(Ri) I/Os:
» Read runs of tuples into memory, sort
» Write each sorted run to disk
» Read from all sorted runs to merge
» Write out results
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Join with Index
for each rÎR1:

list = index_lookup(R2, C, r.C)
for each sÎlist:

output (r, s)

Read I/Os: 1 scan of R1, T(R1) index lookups
on R2, and T(R1) data lookups

cost = B(R1) + T(R1) (Lindex + Ldata)
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Can be less when R1 is sorted/clustered by C!



Hash Join (R2 Fits in RAM)
hash = load R2 into RAM and hash by C
for each rÎR1:

list = hash_lookup(hash, r.C)
for each sÎlist:

output (r, s)

Read I/Os: B(R1) + B(R2)
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Hash Join on Disk 

Can be done by hashing both tables to a 
common set of buckets on disk
» Similar to merge sort: 4 (B(R1) + B(R2))

Trick: hash only (key, pointer to record) pairs
» Can then sort the pointers to records that

match and fetch them near-sequentially
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Other Concerns

Join selectivity may affect how many records 
we need to fetch from each relation
» If very selective, may prefer methods that join 

pointers or do index lookups
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Summary

Join algorithms can have different 
performance in different situations

In general, the following are used:
» Index join if an index exists
» Merge join if at least one table is sorted
» Hash join if both tables unsorted
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Complete CBO Process

Generate and compare possible query plans

Query

Generate Plans

Prune x         x

Estimate Cost Costs

Select
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Pick Min



How to Generate Plans?

Simplest way: recursive search of the options 
for each planning choice
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Access paths
for table 1

Access paths
for table 2

Algorithms
for join 1

Algorithms
for join 2⨯ ⨯ ⨯ ⨯ …



How to Generate Plans?

Can limit search space: e.g. many DBMSes
only consider “left-deep” joins
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Often interacts well with conventions for specifying join inputs in 
asymmetric join algorithms (e.g. assume right argument has index)



How to Generate Plans?

Can prioritize searching through the most 
impactful decisions first
» E.g. join order is one of the most impactful
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How to Prune Plans?

While computing the cost of a plan, throw it 
away if it is worse than best so far

Start with a greedy algorithm to find an “OK” 
initial plan that will allow lots of pruning
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Memoization and Dynamic 
Programming
During a search through plans, many 
subplans will appear repeatedly

Remember cost estimates and statistics 
(T(R), V(R, A), etc) for those: “memoization”

Can pick an order of subproblems to make it 
easy to reuse results (dynamic programming)
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Resource Cost of CBO

It’s possible for cost-based optimization itself 
to take longer than running the query!

Need to design optimizer to not take too long
» That’s why we have shortcuts in stats, etc

Luckily, a few “big” decisions drive most of 
the query execution time (e.g. join order)
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Background

2004: MapReduce published, enables writing 
large scale data apps on commodity clusters
» Cheap but unreliable “consumer” machines, 

so system emphasizes fault tolerance
» Focus on C++/Java programmers
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Background

2006: Apache Hadoop project formed as an 
open source MapReduce + distributed FS
» Started in Nutch open source search engine
» Soon adopted by Yahoo & Facebook

2006: Amazon EC2 service launched as the 
newest attempt at “utility computing”
CS 245 31



Background

2007: Facebook starts Hive (later Apache 
Hive) for SQL on Hadoop
» Other SQL-on-MapReduces existed too
» First steps toward “data lake” architecture
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Background

2006-2012: Many other cluster programming 
frameworks proposed to bring MR’s benefits 
to other apps
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Pregel Dremel Dryad
Impala



Background

2010: Spark engine released, built around 
MapReduce + in-memory computing
» Motivation: interactive queries + iterative 

algorithms such as graph analytics

Spark then moves to be a general (“unified”) 
engine, covering existing ones
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Code Size Comparison (2013)
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Background

2012: Shark starts as a port of Hive on Spark

2014: Spark SQL starts as a SQL engine built 
directly on Spark (but interoperable w/ Hive)
» Also adds two new features: DataFrames for

integrating relational ops in complex programs 
and extensible optimizer
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Original Spark API

Resilient Distributed Datasets (RDDs)
» Immutable collections of objects that can be 

stored in memory or disk across a cluster
» Built with parallel transformations (map, filter, …)
» Automatically rebuilt on failure



Load error messages from a log into memory, 
then interactively search for various patterns

lines = spark.textFile(“hdfs://...”)
errors = lines.filter(s => s.startswith(“ERROR”))
messages = errors.map(s => s.split(‘\t’)(2))
messages.cache()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

messages.filter(s => s.contains(“foo”)).count()
messages.filter(s => s.contains(“bar”)).count()

. . .

tasks

results
Cache 1

Cache 2

Cache 3

Base RDDTransformed RDD

Action

Result: full-text search of Wikipedia in 1 sec
(vs 40 s for on-disk data)

Example: Log Mining



Challenges with Spark’s 
Functional API
Looks high-level, but hides many semantics 
of computation from engine
» Functions passed in are arbitrary blocks of 

code
» Data stored is arbitrary Java/Python objects

Users can mix APIs in suboptimal ways



Example Problem
pairs = data.map(word => (word, 1))

groups = pairs.groupByKey()

groups.map((k, vs) => (k, vs.sum))

Materializes all groups
as lists of integers

Then promptly
aggregates them



Challenge: Data Representation
Java objects often many times larger than data

class User(name: String, friends: Array[Int])
User(“Bobby”, Array(1, 2))

User 0x… 0x…

String

3

0

1 2

Bobby

5 0x…

int[]

char[] 5



Spark SQL & DataFrames
Efficient library for working with structured data
» 2 interfaces: SQL for data analysts and external 

apps, DataFrames for complex programs
» Optimized computation and storage underneath



Spark SQL Architecture

Logical 
Plan

Physical 
Plan

Catalog

Optimizer
RDDs

…

Data
Source

API

SQL Data
Frames

Code

Generator



DataFrame API
DataFrames hold rows with a known schema
and offer relational operations through a DSL

c = HiveContext()
users = c.sql(“select * from users”)

ma_users = users[users.state == “MA”]

ma_users.count()

ma_users.groupBy(“name”).avg(“age”)

ma_users.map(lambda row: row.user.toUpper())

Expression AST



API Details

Based on data frame concept in R, Python
» Spark is the first to make this declarative

Integrated with the rest of Spark
» ML library takes DataFrames as input/output
» Easily convert RDDs ↔ DataFrames

Google trends for “data frame”



What DataFrames Enable
1. Compact binary representation

• Columnar, compressed cache; rows for 
processing

2. Optimization across operators (join 
reordering, predicate pushdown, etc)

3. Runtime code generation



Performance
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Data Sources
Uniform way to access structured data
» Apps can migrate across Hive, Cassandra, 

JSON, Parquet, …
» Rich semantics allows query pushdown into 

data sources

Spark
SQL

users[users.age > 20]

select * from users



Examples
JSON:

JDBC:

Together:

select user.id, text from tweets

{
“text”: “hi”,
“user”: {
“name”: “bob”,
“id”: 15 }

}

tweets.json
select age from users where lang = “en”

select t.text, u.age
from tweets t, users u
where t.user.id = u.id
and u.lang = “en” Spark

SQL
{JSON}

select id, age from
users where lang=“en”



Extensible Optimizer

Uses Scala pattern matching (see demo!)
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Which Spark Components
Do People Use?

58%

58%

62%

69%

MLlib + GraphX

Spark Streaming

DataFrames

Spark SQL

75% of users use 2 or more components
(2015 survey)
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Which Languages Are Used?

84%

38% 38%

71%

31%

58%

18%

2014 Languages Used 2015 Languages Used
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Extensions to Spark SQL

Tens of data sources using the pushdown API

Interval queries on genomic data

Geospatial package (Magellan)

Approximate queries & other research
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